级联多电平逆变器故障检测与诊断及两电平电压源逆变器多解识别
1. 人工神经网络在级联五电平逆变器故障检测与诊断中的应用
人工神经网络(ANN)在电力电子领域的故障检测与诊断中有着重要应用。ANN由输入层、隐藏层和输出层等不同层组成,各层通过激活函数相互连接,以执行数学计算和相应的缩放过程。其中,输入层节点使用符号激活函数,隐藏节点使用正切函数,输出节点使用对数段函数。在实现ANN的各种算法中,反向传播网络(BPN)算法主要用于复杂应用,其功能包括数据前馈、误差反向传播和权重更新。
实现故障检测和诊断的算法步骤如下:
1. 使用MATLAB/Simulink对两级五电平逆变器进行仿真。
2. 通过改变负载条件收集电压和电流值。
3. 借助数据集训练神经网络,以获得最佳训练性能曲线。
4. 训练网络以检测和诊断各种故障。
5. 测试训练好的系统以检查其准确性。
6. 使用ANN实现五电平逆变器。
通过MATLAB对各种故障条件进行仿真,结果如下:
| 故障类型 | ANN显示的值 |
| ---- | ---- |
| 开路故障 | 00 |
| 短路故障 | 01 |
| 丢失门极驱动脉冲故障 | 10 |
| 过电压故障 | 11 |
在正常情况下,可得到清晰的五电平输出电压波形。当引入开路、短路、丢失驱动脉冲和过电压等各种故障时,会得到相应的波形。通过将参考输出电压波形与不同故障条件下获得的实际波形进行比较,ANN可以检测到各种故障。
下面是该过程的mermaid流程图: