大模型连续对话功能不同的框架实现也是不同的,以行业使用最多的 Java AI 框架 Spring AI 和 Spring AI Alibaba 为例,给大家演示一下它们连续对话是如何实现的。
所有的大模型本身是不进行信息存储的,也不提供连续对话功能,所以想要实现连续对话功能需要开发者自己写代码才能实现。那怎么才能实现大模型的连续对话功能呢?
大模型连续对话功能不同的框架实现也是不同的,以行业使用最多的 Java AI 框架 Spring AI 和 Spring AI Alibaba 为例,给大家演示一下它们连续对话是如何实现的。
1.SpringAI连续对话实现
Spring AI 以 MySQL 数据库为例,我们来实现一下它的连续对话功能。
“
PS:我们只有先讲对话存储起来,才能实现连续对话功能,所以我们需要借助数据库存储来连续对话。
(1)准备工作
创建表:
CREATE TABLE chat_message (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
conversation_id VARCHAR(255) NOT NULL,
role VARCHAR(50) NOT NULL,
context TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
添加数据库和 MyBatisPlus 依赖:
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-spring-boot3-starter</artifactId>
<version>3.5.11</version>
</dependency>
<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<scope>runtime</scope>
</dependency>
设置配置文件:
spring:
datasource:
url:jdbc:mysql://127.0.0.1:3306/testdb?characterEncoding=utf8
username:root
password:12345678
driver-class-name:com.mysql.cj.jdbc.Driver
# 配置打印 MyBatis 执行的 SQL
mybatis-plus:
configuration:
log-impl:org.apache.ibatis.logging.stdout.StdOutImpl
# 配置打印 MyBatis 执行的 SQL
logging:
level:
com:
ai:
deepseek:debug
编写实体类:
import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Getter;
import lombok.Setter;
import java.io.Serializable;
import java.util.Date;
@Getter
@Setter
@TableName("chat_message")
publicclass ChatMessageDO implements Serializable {
privatestaticfinallong serialVersionUID = 1L;
@TableId(value = "id", type = IdType.AUTO)
private Long id;
private String conversationId;
private String role;
private String context;
private Date createdAt;
}
编写 Mapper:
import com.ai.chat.entity.ChatMessageDO;
import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import org.apache.ibatis.annotations.Mapper;
@Mapper
public interface ChatMessageMapper extends BaseMapper<ChatMessageDO> {
}
(2)自定义ChatMemory类
自定义的 ChatMemory 实现类,将对话记录存储到 MySQL:
import com.ai.deepseek.entity.ChatMessageDO;
import com.ai.deepseek.mapper.ChatMessageMapper;
import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper;
import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import java.util.List;
import java.util.stream.Collectors;
@Component
publicclass MySQLChatMemory implements ChatMemory {
@Autowired
private ChatMessageMapper repository;
@Override
public void add(String conversationId, Message message) {
ChatMessageDO entity = new ChatMessageDO();
entity.setConversationId(conversationId);
entity.setRole(message.getMessageType().name());
entity.setContext(message.getText());
repository.insert(entity);
}
@Override
public void add(String conversationId, List<Message> messages) {
messages.forEach(message -> add(conversationId, message));
}
@Override
public List<Message> get(String conversationId, int lastN) {
LambdaQueryWrapper<ChatMessageDO> queryWrapper = new LambdaQueryWrapper<>();
queryWrapper.eq(ChatMessageDO::getConversationId, conversationId);
// queryWrapper.orderByDesc(ChatMessageDO::getId);
return repository.selectList(queryWrapper)
.stream()
.limit(lastN)
.map(e -> new UserMessage(e.getContext()))
.collect(Collectors.toList());
}
@Override
public void clear(String conversationId) {
LambdaQueryWrapper<ChatMessageDO> queryWrapper = new LambdaQueryWrapper<>();
queryWrapper.eq(ChatMessageDO::getConversationId, conversationId);
repository.delete(queryWrapper);
}
}
(3)代码调用
编写代码测试历史对话保存到 MySQL 的功能:
import com.ai.deepseek.component.MySQLChatMemory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
@RestController
@RequestMapping("/multi")
publicclass MultiChatController {
@Autowired
private ChatClient chatClient;
@Autowired
private MySQLChatMemory chatMemory;
@RequestMapping("/chat")
public Flux<String> chat(@RequestParam("msg") String msg,
@RequestParam(defaultValue = "default") String sessionId) {
// 添加MessageChatMemoryAdvisor,自动管理上下文
MessageChatMemoryAdvisor advisor =
new MessageChatMemoryAdvisor(chatMemory, sessionId, 10); // 保留最近5条历史
return chatClient.prompt()
.user(msg)
.advisors(advisor) // 关键:注入记忆管理
.stream()
.content();
}
}
以上程序执行结果如下:
2.SpringAIAlibaba实现连续对话
Spring AI Alibaba 连续对话的实现就简单很多了,因为它内置了 MySQL 和 Redis 的连续对话存储方式,接下来以 Redis 为例演示 SAA 的连续对话实现,它的实现步骤如下:
- 添加依赖。
- 设置配置文件,配置 Redis 连接信息。
- 添加 Redis 配置类,注入 RedisChatMemoryRepository 对象。
- 配置 ChatClient 实现连续对话。
具体实现如下。
(1)添加依赖
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-memory-redis</artifactId>
</dependency>
(2)设置配置文件
设置配置文件,配置 Redis 连接信息:
spring:
ai:
memory:
redis:
host: localhost
port: 6379
timeout: 5000
(3)添加Redis配置类
添加 Redis 配置类,注入 RedisChatMemoryRepository 对象,实现 Redis 自定义存储器注入:
import com.alibaba.cloud.ai.memory.redis.RedisChatMemoryRepository;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
publicclass RedisMemoryConfig {
@Value("${spring.ai.memory.redis.host}")
private String redisHost;
@Value("${spring.ai.memory.redis.port}")
privateint redisPort;
// @Value("${spring.ai.memory.redis.password}")
// private String redisPassword;
@Value("${spring.ai.memory.redis.timeout}")
privateint redisTimeout;
@Bean
public RedisChatMemoryRepository redisChatMemoryRepository() {
return RedisChatMemoryRepository.builder()
.host(redisHost)
.port(redisPort)
// 若没有设置密码则注释该项
// .password(redisPassword)
.timeout(redisTimeout)
.build();
}
}
(4)配置ChatClient实现连续对话
import com.alibaba.cloud.ai.memory.redis.RedisChatMemoryRepository;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.ai.chat.memory.MessageWindowChatMemory;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
importstatic org.springframework.ai.chat.memory.ChatMemory.CONVERSATION_ID;
@RestController
@RequestMapping("/redis")
publicclass RedisMemoryController {
privatefinal ChatClient chatClient;
privatefinalint MAXMESSAGES = 10;
privatefinal MessageWindowChatMemory messageWindowChatMemory;
public RedisMemoryController(ChatModel dashscopeChatModel,
RedisChatMemoryRepository redisChatMemoryRepository) {
this.messageWindowChatMemory = MessageWindowChatMemory.builder()
.chatMemoryRepository(redisChatMemoryRepository)
.maxMessages(MAXMESSAGES)
.build();
this.chatClient = ChatClient.builder(dashscopeChatModel)
.defaultAdvisors(
MessageChatMemoryAdvisor.builder(messageWindowChatMemory)
.build()
)
.build();
}
@GetMapping("/call")
public String call(String msg, String cid) {
return chatClient.prompt(msg)
.advisors(
a -> a.param(CONVERSATION_ID, cid)
)
.call().content();
}
}
小结
通过以上代码大家也可以看出来,使用 Spring AI 实现连续对话是比较复杂的,需要自己实现数据库增删改查的代码,并且重写 ChatMemory 才能实现连续对话功能;而 Spring AI Alibaba 因为内置了连续对话的多种实现(Redis 和其他数据库),所以只需要简单配置就可以实现了。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 下方小卡片领取🆓↓↓↓