💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要
非局部低秩张量近似已成为高光谱图像(HSI)去噪的前沿方法。然而,尽管这些方法的去噪性能从更多的光谱波段中获益甚微,但其运行时间却显著增加。在本文中,我们提出高光谱图像位于一个全局光谱低秩子空间中,且每个全波段图像块组的光谱子空间应位于该全局低秩子空间内。这促使我们提出了一种用于高光谱图像去噪的统一空间 - 光谱范式。由于新难以模型优化,我们开发了一种受交替最小化启发的高效算法。该算法首先从含噪声的高光谱图像中学习低维正交基和相关的降维图像,然后开发非局部低秩去噪和迭代正则化方法&