【CUDA C】Programming Model

本文介绍了CUDA编程的基本概念,包括内核定义及调用、线程层级结构、内存层级结构等,并探讨了异构编程模型和计算能力的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kernels

CUDA C extends C by allowing the programmer to define C functions, called kernels, that, when called, are executed N times in parallel by N different CUDA threads, as opposed to only once like regular C functions.

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
    ...
}

Here, each of the N threads that execute VecAdd() performs one pair-wise addition.

Thread Hierarchy

For convenience, threadIdx is a 3-component vector, so that threads can be identified using a one-dimensional, two-dimensional, or three-dimensional thread index, forming a one-dimensional, two-dimensional, or three-dimensional block of threads, called a thread block. This provides a natural way to invoke computation across the elements in a domain such as a vector, matrix, or volume.

Each block within the grid can be identified by a one-dimensional, two-dimensional, or three-dimensional index accessible within the kernel through the built-in blockIdx variable. The dimension of the thread block is accessible within the kernel through the built-in blockDim variable.

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j < N)
    C[i][j] = A[i][j] + B[i][j];
}
int main()
{
    ...
    // Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}
  1. On current GPUs, a thread block may contain up to 1024 threads.
  2. Thread blocks are required to execute independently: It must be possible to execute them in any order, in parallel or in series.


Grid of Thread Blocks

Memory Hierarchy

Each thread has private local memory. Each thread block has shared memory visible to all threads of the block and with the same lifetime as the block. All threads have access to the same global memory. There are also two additional read-only memory spaces accessible by all threads: the constant and texture memory spaces. The global, constant, and texture memory spaces are optimized for different memory usages. The global, constant, and texture memory spaces are persistent across kernel launches by the same application.

Heterogeneous Programming

The CUDA programming model also assumes that both the host and the device maintain their own separate memory spaces in DRAM, referred to as host memory and device memory, respectively. Therefore, a program manages the global, constant, and texture memory spaces visible to kernels through calls to the CUDA runtime. This includes device memory allocation and deallocation as well as data transfer between host and device memory.


 Heterogeneous Programming

Compute Capability

The compute capability comprises a major revision number X and a minor revision number Y and is denoted by X.Y.

Devices with the same major revision number are of the same core architecture. The major revision number is 5 for devices based on the Maxwell architecture, 3 for devices based on the Kepler architecture, 2 for devices based on the Fermi architecture, and 1 for devices based on the Tesla architecture.

The compute capability version of a particular GPU should not be confused with the CUDA version (e.g., CUDA 5.5, CUDA 6, CUDA 6.5), which is the version of the CUDA software platform. The CUDA platform is used by application developers to create applications that run on many generations of GPU architectures, including future GPU architectures yet to be invented. While new versions of the CUDA platform often add native support for a new GPU architecture by supporting the compute capability version of that architecture, new versions of the CUDA platform typically also include software features that are independent of hardware generation.

<think>好的,我需要帮助用户找到关于使用C++进行TensorRT和CUDA编程的相关资料。首先,我应该回顾用户提供的引用内容,看看是否有相关的资源可以直接推荐。 用户提供的三个引用中,引用[1]是关于CUDA入门教程的中文解读,由作者自己理解编写,可能对CUDA编程有帮助。引用[2]是关于OpenCV的Python教程,似乎不太相关。引用[3]提到了Flashlight库,是C++的机器学习库,但和TensorRT没有直接关联。因此,主要需要依赖引用[1]中的CUDA资料,并补充其他资源。 接下来,用户需要的是C++的TensorRT和CUDA编程教程和文档。TensorRT是NVIDIA的推理优化库,通常与CUDA结合使用。因此,我应该先推荐NVIDIA的官方文档,因为这是最权威的来源。包括TensorRT Developer Guide和CUDA C++ Programming Guide。 然后,引用[1]中提到有一个CUDA入门教程的中文解读,可能对用户有帮助,特别是作为快速入门的资料。但需要提醒用户,如果遇到问题还是要查阅原著。 此外,用户可能需要一些实践项目或示例代码。NVIDIA的GitHub仓库通常有TensorRT的示例代码,例如TensorRT Open Source Software。同时,开发者论坛和博客(如NVIDIA Developer Blog)也可能提供实用的教程和案例分析。 考虑到用户可能希望有中文资源,可以推荐国内技术社区如知乎、CSDN上的相关文章,但需注意筛选质量。另外,书籍方面,《CUDA C编程权威指南》是经典参考书,适合深入学习。 最后,建议用户结合官方文档和社区资源,逐步从基础CUDA开始,再过渡到TensorRT的应用。同时,提供相关问题,帮助用户进一步探索,如性能优化、调试技巧等。</think>关于使用C++进行TensorRT和CUDA编程的学习资源,以下是分步推荐方案: ### 1. 官方核心文档 - **TensorRT Developer Guide** NVIDIA官方提供的最新开发指南,包含API详解、模型优化策略和C++接口示例。重点阅读$Chapter3: Working with TensorRT in C++$部分,其中详细说明网络定义、解析器使用和推理部署流程[^1]。 - **CUDA C++ Programming Guide** 系统讲解CUDA架构、线程模型和内存管理机制。关键章节包括$Chapter2: Programming Model$的线程层次结构,以及$Chapter5: Memory Hierarchy$的共享内存使用技巧[^1]。 ### 2. 代码实践资源 ```cpp // TensorRT模型构建基础示例(需包含NvInfer.h) class Logger : public ILogger { void log(Severity severity, const char* msg) override { if (severity != Severity::kINFO) std::cout << msg << std::endl; } } logger; IBuilder* builder = createInferBuilder(logger); INetworkDefinition* network = builder->createNetworkV2(0U); // 添加输入层和卷积层 ITensor* input = network->addInput("input", DataType::kFLOAT, Dims3{3, 224, 224}); IConvolutionLayer* conv = network->addConvolution(*input, 64, DimsHW{7,7}, weightMap["conv1.weight"], weightMap["conv1.bias"]); conv->setStride(DimsHW{2,2}); // 构建优化引擎 IBuilderConfig* config = builder->createBuilderConfig(); config->setMaxWorkspaceSize(1 << 30); ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); ``` ### 3. 延伸学习材料 - **NVIDIA深度学习学院(DLI)课程** 提供《Accelerating Applications with CUDA C/C++》和《Deploying Deep Learning Networks with TensorRT》实验课,包含云端GPU实验环境 - **GitHub资源精选** - [TensorRT Open Source Samples](https://github.com/NVIDIA/TensorRT)官方示例库,包含ONNX解析、动态shape处理等典型场景 - [CUDA Pro Tips](https://developer.nvidia.com/blog/cuda-pro-tips)系列博客的C++代码案例 ### 4. 调试工具链 - 使用Nsight Systems进行kernel性能分析时,注意观察$Memory Bandwidth Utilization$和$Streaming Multiprocessor Activity$指标,识别内存瓶颈 - 配合NVTX标记工具标注代码段: ```cpp #include <nvtx3/nvToolsExt.h> nvtxRangePushA("Preprocess Stage"); // 图像预处理代码 nvtxRangePop(); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值