打造更具可信度和说服力的推荐系统:源特征的影响
1. 推荐系统的重要性与挑战
推荐系统在为在线用户提供个性化建议、支持复杂决策过程中扮演着重要角色。然而,用户是否会接受推荐系统给出的建议,并不完全取决于系统复杂的数据挖掘和分析技术。传统的说服理论表明,人们更倾向于接受可信来源的建议,因此提升推荐系统的可信度对于提高推荐接受率至关重要。
2. 推荐系统作为社会行为体
以往的研究大多将推荐系统视为软件工具,而忽视了其在与用户交互中的社会角色。近期的研究认为,推荐系统应被理解为“社会行为体”。人们会与包括计算机在内的机器建立社会关系,并在与技术的交互中应用社会规则。
例如,Wang和Benbasat发现,用户不仅会认为推荐系统具有人类特征,将其视为社会行为体,而且这种社会认知会影响对系统的评价。Al - Natour等人也指出,在线购物助手会被用户视为社会行为体,并被赋予个性和行为特征。Aksoy等人的研究表明,当推荐代理生成推荐的方式与用户的决策过程相似时,用户更有可能使用该代理。
3. 源可信度
源可信度并非源的固有特征,而是取决于信息接收者对源的感知。可信度通常包含多个维度,多数研究者认为主要由两个关键要素构成:可信赖性和专业性。
维度 | 定义 | 影响因素 |
---|---|---|
可信赖性 | 指源的品格或个人正直等方面,也涉及意图。有说服意图的源通常被认为不如无说服意图的源值得信赖。 |