B树(B-树)详解

B树是一种自平衡的多叉查找树,特别适用于大型数据存储,如数据库和文件系统。它减少了磁盘读取次数,提高了查找、顺序访问、插入和删除操作的效率。在数据库中,B树通过辅助索引加速查找,降低磁盘读取开销,实现了logbN级别的查找速度。在文件系统中,B树利用磁盘预读原理,确保高效的数据访问。然而,B树的弊端在于键值长度固定,不易适应动态长度的键值需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B-树,即为B树。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,B-tree就是指的B树

B-树容易让人误解,建议大家用B树称呼, 本文以下直称B树

这篇介绍概念, 优点应用等, B树的描述和增删改查请到隔壁我写的另一篇(篇幅较长,和这篇分开了):

https://blog.csdn.net/q5706503/article/details/84729052

简介:

B树(英语:B-tree)是一种自平衡的,能够保持数据有序。这种数据结构能够让查找数据、顺序访问、插入数据及删除的动作,都在对数时间内完成。B树,概括来说是一个一般化的二叉查找树(binary search tree),可以拥有多于2个子节点。与自平衡二叉查找树不同,B树为系统大块数据的读写操作做了优化。B树减少定位记录时所经历的中间过程,从而加快存取速度。B树这种数据结构可以用来描述外部存储。这种数据结构常被应用在数据库文件系统的实现上。

数据库中的B树使用

B/B+树也经常用做数据库的索引

已排序文件的查找时间

通常,排序和查找算法会被通过大O符号,刻画为比较级别的数值。对一个有N笔记录的已排序表进行二叉查找,打个比方说,可以在O(log2N)比较级完成。如果表有1,000,000笔记录,那么定位其中一笔记录,将在20 个比较级内完成。 log21,000,000 = 19.931...

大数据库一直以来被存储在磁盘。从磁盘上读取一笔记录,与之后的比较键值操作相比,在花费的运行时间上前者处于支配地位。从磁盘读取记录的时间涉及到一个 寻道时间 和 旋转延迟。寻道时间可能是从0到20或者更多毫秒,旋转延迟平均下来约是旋转周期的一半。对于一个7200 转每分钟的磁盘,旋转周期大约是8.33毫秒。像希捷ST3500320NS这样的磁盘,磁道至磁道的寻道时间为 0.8毫秒,平均读取寻道时间为8.5毫秒。为了简化,假设从磁盘读取花费10毫秒。

乐观来说,如此,在一百万中定位一笔记录将会话花费20次磁盘读取乘上10毫秒每次读取时间,总共是0.2秒。

时间花费没有那么糟糕的原因是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值