大数据毕业设计:python校园舆情分析可视化系统 情感分析 微博 爬虫 scrapy爬虫技术 朴素贝叶斯分类算法✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅

1、项目介绍

技术栈:
Python语言、Django框架、数据库、Echarts可视化、scrapy爬虫技术、朴素贝叶斯分类算法(情感分类)

舆情分析+监测预警+情感分析+爬虫+可视化+论文

2、项目界面

(1)数据中心
在这里插入图片描述

(2)舆情分析
在这里插入图片描述

(3)舆情预警
在这里插入图片描述

(4)情感分析

在这里插入图片描述

(5)词云图分析

在这里插入图片描述

(6)后台数据管理
在这里插入图片描述
(7)注册登录

在这里插入图片描述

3、项目说明

摘要

随着社交媒体的迅猛发展和数据分析技术的进步,校园舆情监测变得尤为重要。高校管理部门长期依赖人工收集和分析舆情信息,效率低下,难以及时发现并应对潜在风险,导致危机处理滞后,影响学校形象。
本系统基于Python语言开发,后端采用Django框架,使用Scrapy爬取微博数据,并通过朴素贝叶斯分类算法进行情感分析。前端采用Vue框架,结合Element-Plus组件库、axios请求库和ECharts可视化工具,实现舆情数据展示、筛选和分析。
系统主要功能包括微博数据展示、舆情分析和预警。微博数据以瀑布流卡片形式呈现,颜色区分情感类别,点击卡片可查看详细分析。舆情分析模块通过饼图、柱状图和词云图展现情感占比、信息量排名及关键词分布。预警模块利用折线图追踪高校舆情趋势,负面情感超标时触发警示。系统提升了舆情监测的自动化和精准度,为高校管理提供有效决策支持。

关键词 舆情监测,情感分析,Python

系统总体架构分为四层:用户界面层、应用程序层、业务逻辑层、数据存储层。用户界面层使用Bootstrap和Layui,提供响应式设计和现代化界面,增强用户体验。用户通过浏览器访问系统,界面层负责展示信息和接收用户输入。应用程序层基于Django框架,处理请求与响应,路由管理和视图呈现。Django实现灵活性,易于扩展和维护,支持RESTful API设计。业务逻辑层包含核心业务处理逻辑,负责数据验证、用户认证和权限管理。数据存储层采用MySQL数据库,通过pymysql进行连接和操作。数据以表格形式存储,支持高效查询和事务管理。整个系统架构如图4-1所示。

4、核心代码


# -*- coding: utf-8 -*-
from __future__ import unicode_literals

import sys
import gzip
import marshal
from math import log, exp

from ..utils.frequency import AddOneProb


class Bayes(object):

    def __init__(self):
        self.d = {}
        self.total = 0

    def save(self, fname, iszip=True):
        d = {}
        d['total'] = self.total
        d['d'] = {}
        for k, v in self.d.items():
            d['d'][k] = v.__dict__
        if sys.version_info[0] == 3:
            fname = fname + '.3'
        if not iszip:
            marshal.dump(d, open(fname, 'wb'))
        else:
            f = gzip.open(fname, 'wb')
            f.write(marshal.dumps(d))
            f.close()

    def load(self, fname, iszip=True):
        if sys.version_info[0] == 3:
            fname = fname + '.3'
        if not iszip:
            d = marshal.load(open(fname, 'rb'))
        else:
            try:
                f = gzip.open(fname, 'rb')
                d = marshal.loads(f.read())
            except IOError:
                f = open(fname, 'rb')
                d = marshal.loads(f.read())
            f.close()
        self.total = d['total']
        self.d = {}
        for k, v in d['d'].items():
            self.d[k] = AddOneProb()
            self.d[k].__dict__ = v

    def train(self, data):
        for d in data:
            c = d[1]
            if c not in self.d:
                self.d[c] = AddOneProb()
            for word in d[0]:
                self.d[c].add(word, 1)
        self.total = sum(map(lambda x: self.d[x].getsum(), self.d.keys()))

    def classify(self, x):
        tmp = {}
        for k in self.d:
            tmp[k] = log(self.d[k].getsum()) - log(self.total)
            for word in x:
                tmp[k] += log(self.d[k].freq(word))
        ret, prob = 0, 0
        for k in self.d:
            now = 0
            try:
                for otherk in self.d:
                    now += exp(tmp[otherk]-tmp[k])
                now = 1/now
            except OverflowError:
                now = 0
            if now > prob:
                ret, prob = k, now
        return (ret, prob)

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值