python地铁数据分析可视化系统 交通数据 地铁运营数据 Django框架 Vue框架 交通轨道数据 可视化大屏 大数据技术(附源码)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈:
python语言、Django框架、Vue框架、MySQL数据库、Echarts可视化、地铁数据、交通数据

2、项目界面

(1)数据可视化分析大屏------各城市地铁线路分布、城市客流量分析、地铁票价分析、高峰时段分析、天气影响分析
在这里插入图片描述

(2)数据中心
在这里插入图片描述

(3)注册登录
在这里插入图片描述

(4)修改密码
在这里插入图片描述

(5)后台数据管理

在这里插入图片描述

(6)用户数据管理

在这里插入图片描述

3、项目说明

1. 数据可视化分析大屏

这是一个综合展示地铁数据的界面,通过ECharts可视化技术,将地铁相关的数据以直观的图表形式呈现出来,方便用户快速了解地铁运营的各个方面。

各城市地铁线路分布
  • 功能:展示不同城市的地铁线路分布情况,通过地图或线路图的形式,让用户清晰地看到地铁线路的走向和站点分布。
  • 实现方式:结合地理信息数据和地铁线路数据,使用ECharts的地图组件或自定义的线路图组件进行可视化。
城市客流量分析
  • 功能:分析各个城市的地铁客流量,展示不同时间段(如小时、日、周)的客流量变化趋势。
  • 实现方式:从MySQL数据库中提取客流量数据,通过折线图或柱状图展示客流量的变化。
地铁票价分析
  • 功能:展示不同城市地铁的票价分布情况,分析票价与线路长度、站点数量等因素的关系。
  • 实现方式:通过柱状图或饼图展示不同票价区间的线路数量占比。
高峰时段分析
  • 功能:分析地铁在不同时间段的客流量,确定高峰时段,并展示高峰时段的客流量变化。
  • 实现方式:提取客流量数据,通过折线图或热力图展示高峰时段的客流量分布。
天气影响分析
  • 功能:分析天气对地铁客流量的影响,例如雨天、晴天等不同天气条件下的客流量变化。
  • 实现方式:结合天气数据和客流量数据,通过对比图或趋势图展示天气对客流量的影响。

2. 数据中心

数据中心是数据存储和管理的核心模块,用户可以在这里查看、筛选、导出地铁相关的数据。

  • 功能:提供数据的查询、筛选、导出功能,方便用户获取所需的数据。
  • 实现方式:通过Django后端连接MySQL数据库,Vue前端提供用户界面,用户可以通过表单输入查询条件,系统返回相应的数据。

3. 注册登录

这是用户进入系统的入口,用户可以通过注册账号并登录来使用系统提供的各种功能模块。

  • 功能:用户注册、登录、密码找回等功能。
  • 实现方式:使用Django框架的用户认证系统,结合Vue前端实现用户界面。

4. 修改密码

用户可以在这里修改自己的登录密码。

  • 功能:允许用户在登录状态下修改密码,确保账户安全。
  • 实现方式:通过Django的表单验证和用户认证系统实现密码修改功能。

5. 后台数据管理

后台数据管理模块是系统管理员使用的功能,用于管理地铁数据和其他系统数据。

  • 功能:添加、删除、修改地铁线路、站点、客流量等数据。
  • 实现方式:通过Django Admin或自定义的后台管理界面,管理员可以对数据库中的数据进行操作。

6. 用户数据管理

用户数据管理模块用于管理用户信息,包括用户权限、用户行为记录等。

  • 功能:管理用户账号、权限分配、用户行为日志等。
  • 实现方式:通过Django的用户管理系统和权限系统实现,结合Vue前端提供用户界面。

4、核心代码

class UserCRUD(CRUDBase):
    def __init__(self):
        super().__init__(
            table_name='user',
            fields=['id', 'username', 'password' 'role'],
            required_fields = ['username', 'password']
        )
    def list(self, request) -> JsonResponse:
        if request.method != 'POST':
            return JsonResponse({'code': '5004', 'msg': '请求方法错误', 'data': None})
        try:
            data = json.loads(request.body)
            username = data.get('username')
            if username:
                sql = f'''SELECT * FROM `{self.table_name}` 
                          WHERE username LIKE CONCAT('%%', %s, '%%')'''
                result = getPublicData.querys(sql, [username], 'select')
            else:
                sql = f'SELECT * FROM `{self.table_name}`'
                result = getPublicData.querys(sql, [], 'select')

            data_list = []
            for item in result:
                node = {}
                for index, field in enumerate(self.fields):
                    node[field] = item[index]
                data_list.append(node)

            return JsonResponse({'code': '200', 'data': {'list': data_list}})

        except Exception as e:
            return JsonResponse({'code': '5004', 'msg': str(e), 'data': None})

user_crud = UserCRUD()

def userlist(request):
    return user_crud.list(request)

def useradd(request):
    return user_crud.add(request)

def userdelete(request):
    return user_crud.delete(request)

def userupdate(request):
    return user_crud.update(request)




def login(request):
    if request.method == 'GET':
        return render(request, 'Login.html')
    else:
        data = json.loads(request.body)
        username = data['username']
        password = data['password']

        # 查询用户表
        users = getPublicData.querys(
            "select * from `user` where username=%s and password=%s",
            [username, password],
            'select'
        )
        if users:
            # 登录成功,返回用户信息
            return JsonResponse({'code': '200', 'data': {
                'role': 'USER',  # 默认角色为 USER
                'id': users[0][0],   # 假设 id 是第 1 列
                'password': users[0][2],  # 假设 password 是第 3 列
                'username': users[0][1],  # 假设 username 是第 2 列
            }})
        else:
            # 登录失败,返回错误信息
            return JsonResponse({'code': '5004', 'msg': '用户不存在', 'data': None})




def registry(request):
    if request.method == 'POST':
        data = json.loads(request.body)
        print(data)
        username = data['username']
        password = data['password']
        role = "USER"

        try:
            # 插入用户数据到数据库
            with connection.cursor() as cursor:
                cursor.execute(
                    '''INSERT INTO user (username, password, role) VALUES (%s, %s, %s)''',
                    [username, password, role]
                )
                print("插入成功")
            return JsonResponse({'code': '200', 'msg': '注册成功', 'data': None})
        except Exception as e:
            print(f"插入失败: {e}")  # 打印异常信息
            return JsonResponse({'code': '5001', 'msg': '注册失败', 'data': None})


def logOut(request):
    request.session.clear()
    return redirect('login')

class MetroCRUD(CRUDBase):
    def __init__(self):
        super().__init__(
            table_name='metro_lines',
            # id

            fields=['id', 'city', 'city_tier', 'line_number', 'station_name', 'weather', 'day_type', 'time_period', 'daily_passengers', 'morning_peak_passengers', 'evening_peak_passengers', 'start_time', 'end_time', 'base_fare']

        )

metro_crud = MetroCRUD()

def metro_list(request):
    return metro_crud.list(request)

def metro_add(request):
    return metro_crud.add(request)

def metro_delete(request):
    return metro_crud.delete(request)

def metro_update(request):
    return metro_crud.update(request)

@require_http_methods(["GET"])
def metro_analysis(request):
    """
    获取地铁数据分析结果
    返回5个分析结果:
    1. 各城市地铁线路分布
    2. 城市客流量分析
    3. 地铁票价分析
    4. 高峰时段分析
    5. 天气影响分析
    """
    try:
        # 创建数据分析实例
        analyzer = MetroDataAnalysis()
        # 获取所有分析结果
        analysis_results = analyzer.get_all_analysis()
        
        return JsonResponse({
            'code': 200,
            'msg': '获取数据分析结果成功',
            'data': analysis_results
        })
    except Exception as e:
        return JsonResponse({
            'code': 500,
            'msg': f'获取数据分析结果失败:{str(e)}',
            'data': None
        })

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

数据挖掘与数据分析 数据挖掘与数据分析 ⼀、数据挖掘和数据分析概述 数据挖掘和数据分析都是从数据中提取⼀些有价值的信息,⼆者有很多联系,但是⼆者的侧重点和实现⼿法有所区分。 数据挖掘和数据分析的不同之处: 1、在应⽤⼯具上,数据挖掘⼀般要通过⾃⼰的编程来实现需要掌握编程语⾔;⽽数据分析更多的是借助现有的分析⼯具进⾏。 2、在⾏业知识⽅⾯,数据分析要求对所从事的⾏业有⽐较深的了解和理解,并且能够将数据与⾃⾝的业务紧密结合起来;⽽数据挖掘不需 要有太多的⾏业的专业知识。 3、交叉学科⽅⾯,数据分析需要结合统计学、营销学、⼼理学以及⾦融、政治等⽅⾯进⾏综合分析;数据挖掘更多的是注重技术层⾯的结 合以及数学和计算机的集合 数据挖掘和数据分析的相似之处: 1、数据挖掘和数据分析都是对数据进⾏分析、处理等操作进⽽得到有价值的知识。 2、都需要懂统计学,懂数据处理⼀些常⽤的⽅法,对数据的敏感度⽐较好。 3、数据挖掘和数据分析的联系越来越紧密,很多数据分析⼈员开始使⽤编程⼯具进⾏数据分析,如SAS、R、SPSS等。⽽数据挖掘⼈员 在结果表达及分析⽅⾯也会借助数据分析的⼿段。⼆者的关系的界限变得越来越模糊。 ⼆、数据挖掘 1 数学预备知识 概率论:⽀撑整个数据挖掘算法和机器学习算法的数学基础,要熟悉常见的⼀些概率分布。 矩阵论:线性代数中对数据挖掘最有⽤的部分,还有⼀些线性空间相关知识也很重要。 信息论:将信息和数学紧密连接在⼀起并完美的表达的桥梁,需要掌握信息熵、信息增益等相关知识。 统计学:数据分析最早的依赖基础,通常和概率论⼀起应⽤,现在的机器学习和数据挖掘很多都是基于统计的,常见的均值、⽅差、协⽅差 等都要熟练掌握。 2 编程基础 数据挖掘需要⼀定的编程基础,因为要实现模型以及数据的处理很多⼯作都是需要程序来进⾏的,数据挖掘常⽤的编程语⾔如下: SQL:数据库的熟练使⽤是任何数据挖掘⼈员必不可少的技能。 C++ :有很多的标准模板库以及机器学习模型库进⾏调⽤可以⽅便编程实现。 Python:对字符串处理有极⼤的优势,是解释型语⾔,实现简单,⽽且有很多开源的机器学习模型库的⽀持,可处理⼤规模数据。 Matlab:拥有强⼤的矩阵运算,也是解释型语⾔,有很多发展较成熟库可以直接调⽤,⽀持数据结果的可视化表⽰,但是处理数据量有 限。 R:近年兴起的数据分析编程语⾔,数据可视化做的⽐较好,语法简单,学习成本很低,很多⾮程序设计⼈员都可以数量掌握。 Java:使⽤范围最⼴的编程语⾔,有很多社区进⾏交流,进⾏编程实现具有灵活⾼效的特点,不⾜之处就是实现功能的代码量较⼤(相对于 其他数据挖掘编程语⾔)。 Scala: ⼀种具有⾯向对象风格、函数式风格、更⾼层的并发模型的编程语⾔。同时Scala是⼤数据处理平台Spark的实现语⾔。 3 数据挖掘的模型知识 机器学习和数据挖掘是紧密相关的,要进⾏数据挖掘需要掌握⼀些机器学习所⽤的⽅法和模型知识,通过模型的训练可以得到处理数据的最 优的模型。数据挖掘常⽤的模型如下: 3.1 监督学习模型 就是⼈们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到⼀个最优模型(这个模型属于某个函数的集合,最 优则表⽰在某个评价准则下是最佳的),再利⽤这个模型将所有的输⼊映射为相应的输出,对输出进⾏简单的判断从⽽实现分类的⽬的,也 就具有了对未知数据进⾏分类的能⼒。 3.1.1决策树: 决策树是⽤于分类和预测的主要技术之⼀,决策树学习是以实例为基础的归纳学习算法,它着眼于从⼀组⽆次序、⽆规则的实例中推理出以 决策树表⽰的分类规则。构造决策树的⽬的是找出属性和类别间的关系,⽤它来预测将来未知类别的记录的类别。它采⽤⾃顶向下的递归⽅ 式,在决策树的内部节点进⾏属性的⽐较,并根据不同属性值判断从该节点向下的分⽀,在决策树的叶节点得到结论。 主要的决策树算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它们在选择测试属性采⽤的技术、⽣成的决策树的 结构、剪枝的⽅法以及时刻,能否处理⼤数据集等⽅⾯都有各⾃的不同之处。 3.1.2 贝叶斯⽅法: 贝叶斯(Bayes)分类算法是⼀类利⽤概率统计知识进⾏分类的算法,如朴素贝叶斯(Naive Bayes)算法。这些算法主要利⽤Bayes定理 来预测⼀个未知类别的样本属于各个类别的可能性,选择其中可能性最⼤的⼀个类别作为该样本的最终类别。由于贝叶斯定理的成⽴本⾝需 要⼀个很强的条件独⽴性假设前提,⽽此假设在实际情况中经常是不成⽴的,因⽽其分类准确性就会下降。为此就出现了许多降低独⽴性假 设的贝叶斯分类算法,如TAN(Tree Augmented Native Bayes)算法,它是在贝叶斯⽹络结构的基础上增加属性对之间的关联来实现 的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值