extract ()中正则表达式注意事项

本文探讨了在使用Pandas的str.extract()函数时,正则表达式如何影响提取结果。通过示例展示了不同正则表达式结构(如是否使用括号)对提取电话号码的影响。解决方案包括调整括号的使用或拆分正则表达式以避免不期望的额外列。正确处理括号可以确保获得期望的电话号码格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用str.extract ()提取电话号码时发现,正则表达式里有几对(),就会提取出几列数据,有时会和期望的答案不一样。举例说明:

三种格式的号码:

###-###-####
# (###) ###-####
# ### ### ####

正则表达式:(\d\s)??\d3?\d3?[-\s]\d{3}[-\s]\d{4}

这样的正则表达式本来没有问题,但是一放进str.extract,如:data.column.str.extract(r'(\d\s)??\d3?\d3?[-\s]\d{3}[-\s]\d{4}'),结果如下:

因为正则表达式包含一对(),即(\d\s)?,所以只匹配出最前面的那部分内容。

如果整个表达式外面加(),即data.column.str.extract(r'((\d\s)??\d3?\d3?[-\s]\d{3}[-\s]\d{4})'),结果如下:

第一列匹配正常,但是多了第二列(应该匹配的是(\d\s)?)。

换一种方法,(\d\s)不用(),?分开加在\d和\s后面,即data.column.str.extract(r'(\d?\s??\d3?\d3?[-\s]\d{3}[-\s]\d{4})'),结果如下:

这个结果是期望得到的结果。

所以要么用第三种写法,就是如果第一个()里的内容多的话就很麻烦了,要么用第二种方法,然后选取第一列即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值