文章目录
第三章 随机向量及其概率分布
1. 二维随机向量及其概率分布
n n n维随机变量/ n n n维随机向量:设 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn是定义在样本空间 Ω \Omega Ω上的 n n n个随机变量,则 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,⋯,Xn)称为 n n n维随机变量或 n n n维随机向量
二维随机变量的分布函数:设 ( X , Y ) (X,Y) (X,Y)是二维随机向量,对于任意 x , y ∈ R x,y\in\mathbb R x,y∈R,二元函数 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\le x,Y\le y\} F(x,y)=P{X≤x,Y≤y}称为二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数,或 X X X与 Y Y Y的联合分布函数。 F ( x , y ) F(x,y) F(x,y)是事件 { X ≤ x } \{X\le x\} {X≤x}与 { Y ≤ y } \{Y\le y\} {Y≤y}同时发生的概率
P { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P\{x_1<X\le x_2,y_1<Y\le y_2\}=F(x_2,y_2)-F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1) P{x1<X≤x2,y1<Y≤y2}=F(x2,y2)−F(x2,y1)−F(x1,y2)+F(x1,y1)
分布函数
F
(
x
,
y
)
F(x,y)
F(x,y)的性质:
(1)
F
(
x
,
y
)
F(x,y)
F(x,y)对每个变量是单调增函数
(2)
F
(
x
,
y
)
F(x,y)
F(x,y)对每个变量是右连续的,即
F
(
x
+
0
,
y
)
=
F
(
x
,
y
)
F(x+0,y)=F(x,y)
F(x+0,y)=F(x,y),
F
(
x
,
y
+
0
)
=
F
(
x
,
y
)
F(x,y+0)=F(x,y)
F(x,y+0)=F(x,y)
(3)
F
(
−
∞
,
y
)
=
F
(
x
,
−
∞
)
=
F
(
−
∞
,
−
∞
)
=
0
F(-\infty,y)=F(x,-\infty)=F(-\infty,-\infty)=0
F(−∞,y)=F(x,−∞)=F(−∞,−∞)=0,
F
(
+
∞
,
+
∞
)
=
1
F(+\infty,+\infty)=1
F(+∞,+∞)=1
(4)
∀
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈
R
2
\forall (x_1,y_1),(x_2,y_2)\in\mathbb R^2
∀(x1,y1),(x2,y2)∈R2,若
x
1
≤
x
2
,
y
1
≤
y
2
x_1\le x_2,y_1\le y_2
x1≤x2,y1≤y2,则
F
(
x
2
,
y
2
)
−
F
(
x
2
,
y
1
)
−
F
(
x
1
,
y
2
)
+
F
(
x
1
,
y
1
)
≥
0
F(x_2,y_2)-F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1)\ge0
F(x2,y2)−F(x2,y1)−F(x1,y2)+F(x1,y1)≥0
边缘分布函数:单个变量的分布函数
分量
X
X
X的分布函数
F
X
(
x
)
=
P
{
X
≤
x
}
=
lim
y
→
+
∞
P
{
X
≤
x
,
Y
≤
y
}
=
lim
y
→
+
∞
F
(
x
,
y
)
=
F
(
x
,
+
∞
)
F_X(x)=P\{X\le x\}=\lim\limits_{y\to+\infty}P\{X\le x,Y\le y\}=\lim\limits_{y\to+\infty}F(x,y)=F(x,+\infty)
FX(x)=P{X≤x}=y→+∞limP{X≤x,Y≤y}=y→+∞limF(x,y)=F(x,+∞),即
F
X
(
x
)
=
F
(
x
,
+
∞
)
F_X(x)=F(x,+\infty)
FX(x)=F(x,+∞),称为二维随机变量
(
X
,
Y
)
(X,Y)
(X,Y)关于
Y
Y
Y的边缘分布函数
分量
Y
Y
Y的分布函数
F
Y
(
y
)
=
F
(
+
∞
,
y
)
F_Y(y)=F(+\infty,y)
FY(y)=F(+∞,y)
F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y)由分布函数 F ( x , y ) F(x,y) F(x,y)唯一确定,但反过来不一定成立(只有在独立的时候才成立)
二维离散型随机向量
(
X
,
Y
)
(X,Y)
(X,Y)的分布律:
P
{
X
=
x
i
,
Y
=
y
i
}
=
p
i
j
(
i
,
j
=
1
,
2
,
⋯
)
P\{X=x_i,Y=y_i\}=p_{ij}(i,j=1,2,\cdots)
P{X=xi,Y=yi}=pij(i,j=1,2,⋯),满足性质:(1)
p
i
j
≥
0
p_{ij}\ge0
pij≥0,(2)
∑
i
=
1
∞
∑
j
=
1
∞
p
i
j
=
1
\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}p_{ij}=1
i=1∑∞j=1∑∞pij=1
边缘分布律:
p
i
⋅
=
P
{
X
=
x
i
}
=
∑
j
=
1
∞
p
i
j
(
i
=
1
,
2
,
⋯
)
p_{i\cdot}=P\{X=x_i\}=\sum\limits_{j=1}^\infty p_{ij}(i=1,2,\cdots)
pi⋅=P{X=xi}=j=1∑∞pij(i=1,2,⋯),
p
⋅
j
=
P
{
Y
=
y
j
}
=
∑
i
=
1
∞
(
j
=
1
,
2
,
⋯
)
p_{\cdot j}=P\{Y=y_j\}=\sum\limits_{i=1}^\infty(j=1,2,\cdots)
p⋅j=P{Y=yj}=i=1∑∞(j=1,2,⋯)
二维连续性随机向量
(
X
,
Y
)
(X,Y)
(X,Y)及其分布律:存在非负可积函数
f
(
x
,
y
)
(
x
∈
R
,
y
∈
R
)
f(x,y)(x\in\mathbb R,y\in\mathbb R)
f(x,y)(x∈R,y∈R),使得
∀
\forall
∀区域
A
⊂
R
2
A\subset\mathbb R^2
A⊂R2,都有
P
{
(
X
,
Y
)
∈
A
}
=
∬
A
f
(
x
,
y
)
d
x
d
y
P\{(X,Y)\in A\}=\iint\limits_Af(x,y)\text{d}x\text{d}y
P{(X,Y)∈A}=A∬f(x,y)dxdy,则称
(
X
,
Y
)
(X,Y)
(X,Y)为二维连续型随机向量,称
f
(
x
,
y
)
f(x,y)
f(x,y)为
(
X
,
Y
)
(X,Y)
(X,Y)的概率密度
概率密度的性质:(1)
∀
x
,
y
∈
R
,
f
(
x
,
y
)
≥
0
\forall x,y\in\mathbb R,f(x,y)\ge0
∀x,y∈R,f(x,y)≥0;(2)
∫
−
∞
+
∞
∫
−
∞
+
∞
f
(
x
)
d
x
d
y
=
1
\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x)\text{d}x\text{d}y=1
∫−∞+∞∫−∞+∞f(x)dxdy=1;(3) 若
f
(
x
,
y
)
f(x,y)
f(x,y)在点
(
x
,
y
)
(x,y)
(x,y)的某邻域内连续,则
∂
2
F
(
x
,
y
)
∂
x
∂
y
=
f
(
x
,
y
)
\frac{\partial^2 F(x,y)}{\partial x\partial y}=f(x,y)
∂x∂y∂2F(x,y)=f(x,y)
二维连续性随机向量
(
X
,
Y
)
(X,Y)
(X,Y)的分布函数为
F
(
x
,
y
)
=
∫
−
∞
x
∫
−
∞
y
f
(
u
,
v
)
d
u
d
v
F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(u,v)\text{d}u\text{d}v
F(x,y)=∫−∞x∫−∞yf(u,v)dudv
此时,
X
,
Y
X,Y
X,Y分别为一维连续型随机变量,关于它们的边缘概率密度分别为
f
X
(
x
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
f_X(x)=\int_{-\infty}^{+\infty}f(x,y)\text{d}y
fX(x)=∫−∞+∞f(x,y)dy,
f
Y
(
y
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)\text{d}x
fY(y)=∫−∞+∞f(x,y)dx
常见的几种二维连续型随机变量及其分布律:
(1) 二维正态分布
N
(
μ
1
,
μ
2
;
σ
1
2
,
σ
2
2
;
ρ
)
N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)
N(μ1,μ2;σ12,σ22;ρ):若二维随机向量
(
X
,
Y
)
(X,Y)
(X,Y)的概率密度为
f
(
x
,
y
)
=
1
2
π
σ
1
σ
2
1
−
ρ
2
e
−
1
2
(
1
−
ρ
2
)
[
(
x
−
μ
1
)
2
σ
1
2
−
2
ρ
(
x
−
μ
1
)
(
y
−
μ
2
)
σ
1
σ
2
+
(
y
−
μ
2
)
2
σ
2
2
]
,
x
,
y
∈
R
f(x,y)=\cfrac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]},x,y\in\mathbb R
f(x,y)=2πσ1σ21−ρ21e−2(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2],x,y∈R其中
σ
1
>
0
,
σ
2
>
0
,
−
1
<
ρ
<
1
\sigma_1>0,\sigma_2>0,-1<\rho<1
σ1>0,σ2>0,−1<ρ<1,则
(
X
,
Y
)
~
N
(
μ
1
,
μ
2
;
σ
1
2
,
σ
2
2
;
ρ
)
(X,Y)\text{\large\textasciitilde}N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)
(X,Y)~N(μ1,μ2;σ12,σ22;ρ)
且
X
~
N
(
μ
1
,
σ
1
2
)
X\text{\large\textasciitilde}N(\mu_1,\sigma_1^2)
X~N(μ1,σ12),
Y
~
N
(
μ
2
,
σ
2
2
)
Y\text{\large\textasciitilde}N(\mu_2,\sigma_2^2)
Y~N(μ2,σ22),与
ρ
\rho
ρ无关
(2) 二维均匀分布:若二维随机向量 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) = { 1 A , ( x , y ) ∈ G 0 , 其他 f(x,y)=\begin{cases}\frac{1}{A},&(x,y)\in G\\0,&\text{其他}\end{cases} f(x,y)={A1,0,(x,y)∈G其他则称 ( X , Y ) (X,Y) (X,Y)在 G G G上服从二维均匀分布,其中 A ( A > 0 ) A(A>0) A(A>0)为有界区域 G G G的面积
2. 条件分布
二维离散型随机向量
设二维离散型随机向量 ( X , Y ) (X,Y) (X,Y)的分布律为 p i j = P { X = x i , Y = y j } ( i , j = 1 , 2 , ⋯ ) p_{ij}=P\{X=x_i,Y=y_j\}(i,j=1,2,\cdots) pij=P{X=xi,Y=yj}(i,j=1,2,⋯)
若 ( X , Y ) (X,Y) (X,Y)关于 Y Y Y的边缘分布律 p ⋅ j = P { Y = y j } > 0 p_{\cdot j}=P\{Y=y_j\}>0 p⋅j=P{Y=yj}>0,称 P { X = x i ∣ Y = y j } = p i j p ⋅ j = p i j ∑ k = 1 ∞ p k j ( i = 1 , 2 , ⋯ ) P\{X=x_i|Y=y_j\}=\frac{p_{ij}}{p_{\cdot j}}=\frac{p_{ij}}{\sum\limits_{k=1}^\infty p_{kj}}(i=1,2,\cdots) P{X=xi∣Y=yj}=p⋅jpij=k=1∑∞pkjpij(i=1,2,⋯)为在 Y = y j Y=y_j Y=yj条件下 X X X的条件分布律
若 ( X , Y ) (X,Y) (X,Y)关于 X X X的边缘分布律 p i ⋅ = P { X = x i } > 0 p_{i\cdot}=P\{X=x_i\}>0 pi⋅=P{X=xi}>0,称 P { Y = y j ∣ X = x i } = p i j p i ⋅ = p i j ∑ k = 1 ∞ p i k ( j = 1 , 2 , ⋯ ) P\{Y=y_j|X=x_i\}=\frac{p_{ij}}{p_{i\cdot}}=\frac{p_{ij}}{\sum\limits_{k=1}^\infty p_{ik}}(j=1,2,\cdots) P{Y=yj∣X=xi}=pi⋅pij=k=1∑∞pikpij(j=1,2,⋯)为在 X = x i X=x_i X=xi条件下 Y Y Y的条件分布律
二维连续型随机向量
设二维连续型随机向量 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) f(x,y) f(x,y),关于 X , Y X,Y X,Y的边缘概率密度分别为 f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y)
若对于固定的 y y y, f Y ( y ) > 0 f_Y(y)>0 fY(y)>0,称 f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} fX∣Y(x∣y)=fY(y)f(x,y)为在 Y = y Y=y Y=y条件下 X X X的条件概率密度,称 F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f X ∣ Y ( u ∣ y ) d u F_{X|Y}(x|y)=\int_{-\infty}^x f_{X|Y}(u|y)\text{d}u FX∣Y(x∣y)=∫−∞xfX∣Y(u∣y)du为在 Y = y Y=y Y=y条件下 X X X的条件分布函数
若对于固定的 x x x, f X ( x ) > 0 f_X(x)>0 fX(x)>0,称 f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y|X}(y|x)=\frac{f(x,y)}{f_X(x)} fY∣X(y∣x)=fX(x)f(x,y)为在 X = x X=x X=x条件下 Y Y Y的条件概率密度,称 F Y ∣ X ( y ∣ x ) = ∫ − ∞ y f Y ∣ X ( v ∣ x ) d v F_{Y|X}(y|x)=\int_{-\infty}^y f_{Y|X}(v|x)\text{d}v FY∣X(y∣x)=∫−∞yfY∣X(v∣x)dv为在 X = x X=x X=x条件下 Y Y Y的条件分布函数
一个重要的关系式
f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) = f Y ( y ) f X ∣ Y ( x ∣ y ) f(x,y)=f_X(x)f_{Y|X}(y|x)=f_Y(y)f_{X|Y}(x|y) f(x,y)=fX(x)fY∣X(y∣x)=fY(y)fX∣Y(x∣y)
注意:不是 F ( x , y ) = F X ( x ) F Y ∣ X ( y ∣ x ) F(x,y)=F_X(x)F_{Y|X}(y|x) F(x,y)=FX(x)FY∣X(y∣x)
3. 随机变量的相互独立性
设二维随机向量 ( X , Y ) (X,Y) (X,Y)的分布函数与边缘分布函数分别为 F ( x , y ) , F X ( x ) , F Y ( y ) F(x,y),F_X(x),F_Y(y) F(x,y),FX(x),FY(y)
X X X与 Y Y Y相互独立 ⟺ ∀ x , y ∈ R , F ( x , y ) = F X ( x ) F Y ( y ) \iff\forall x,y\in\mathbb R,F(x,y)=F_X(x)F_Y(y) ⟺∀x,y∈R,F(x,y)=FX(x)FY(y)
- 若 ( X , Y ) (X,Y) (X,Y)为二维离散型随机向量,则 X X X与 Y Y Y相互独立 ⟺ ∀ i , j = 1 , 2 , ⋯ , p i j = p i ⋅ p j ⋅ \iff\forall i,j=1,2,\cdots,p_{ij}=p_{i\cdot}p_{j\cdot} ⟺∀i,j=1,2,⋯,pij=pi⋅pj⋅
- 若 ( X , Y ) (X,Y) (X,Y)为二维连续型随机向量,则 X X X与 Y Y Y相互独立 ⟺ f ( x , y ) = f X ( x ) f Y ( y ) \iff f(x,y)=f_X(x)f_Y(y) ⟺f(x,y)=fX(x)fY(y)几乎处处成立(即不成立的点组成的集合面积为 0 0 0)(事实上,若在点 ( x , y ) (x,y) (x,y)处 f ( x , y ) , f X ( x ) , f Y ( y ) f(x,y),f_X(x),f_Y(y) f(x,y),fX(x),fY(y)都连续,则该关系式在这一点成立)
若 ( X , Y ) ~ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) (X,Y)\text{\large\textasciitilde}N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho) (X,Y)~N(μ1,μ2;σ12,σ22;ρ),则 X X X与 Y Y Y相互独立 ⟺ ρ = 0 \iff\rho=0 ⟺ρ=0
n n n个随机变量相互独立:设 n n n维随机向量 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,⋯,Xn)的分布函数为 F ( x 1 , x 2 , ⋯ , x n ) = P { X 1 ≤ x 1 , X 2 ≤ x 2 , ⋯ , X n ≤ x n } F(x_1,x_2,\cdots,x_n)=P\{X_1\le x_1,X_2\le x_2,\cdots,X_n\le x_n\} F(x1,x2,⋯,xn)=P{X1≤x1,X2≤x2,⋯,Xn≤xn},若 ∀ x 1 , x 2 , ⋯ , x n ∈ R \forall x_1,x_2,\cdots,x_n\in\mathbb R ∀x1,x2,⋯,xn∈R,都有 F ( x 1 , x 2 , ⋯ , x n ) = F X 1 ( x 1 ) F X 2 ( x 2 ) ⋯ F X n ( x n ) F(x_1,x_2,\cdots,x_n)=F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n) F(x1,x2,⋯,xn)=FX1(x1)FX2(x2)⋯FXn(xn),则称随机变量 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn是相互独立的。
设 ( X 1 , X 2 , ⋯ , X m ) ~ F 1 ( x 1 , x 2 , ⋯ , x m ) (X_1,X_2,\cdots,X_m)\text{\large\textasciitilde}F_1(x_1,x_2,\cdots,x_m) (X1,X2,⋯,Xm)~F1(x1,x2,⋯,xm), ( Y 1 , Y 2 , ⋯ , Y n ) ~ F 2 ( y 1 , y 2 , ⋯ , y n ) (Y_1,Y_2,\cdots,Y_n)\text{\large\textasciitilde}F_2(y_1,y_2,\cdots,y_n) (Y1,Y2,⋯,Yn)~F2(y1,y2,⋯,yn), ( X 1 , X 2 , ⋯ , X m , Y 1 , Y 2 , ⋯ , Y n ) ~ F ( x 1 , x 2 , ⋯ , x m , y 1 , y 2 , ⋯ , y n ) (X_1,X_2,\cdots,X_m,Y_1,Y_2,\cdots,Y_n)\text{\large\textasciitilde}F(x_1,x_2,\cdots,x_m,y_1,y_2,\cdots,y_n) (X1,X2,⋯,Xm,Y1,Y2,⋯,Yn)~F(x1,x2,⋯,xm,y1,y2,⋯,yn),若 ∀ x 1 , x 2 , ⋯ , x m , y 1 , y 2 , ⋯ , y n ∈ R \forall x_1,x_2,\cdots,x_m,y_1,y_2,\cdots,y_n\in\mathbb R ∀x1,x2,⋯,xm,y1,y2,⋯,yn∈R, F 1 ( x 1 , x 2 , ⋯ , x m ) F 2 ( y 1 , y 2 , ⋯ , y n ) = F ( x 1 , x 2 , ⋯ , x m , y 1 , y 2 , ⋯ , y n ) F_1(x_1,x_2,\cdots,x_m)F_2(y_1,y_2,\cdots,y_n)=F(x_1,x_2,\cdots,x_m,y_1,y_2,\cdots,y_n) F1(x1,x2,⋯,xm)F2(y1,y2,⋯,yn)=F(x1,x2,⋯,xm,y1,y2,⋯,yn),则称 ( X 1 , X 2 , ⋯ , X m ) (X_1,X_2,\cdots,X_m) (X1,X2,⋯,Xm)和 ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,⋯,Yn)是相互独立的。
两个有关独立性的重要定理:
① 设 ( X 1 , X 2 , ⋯ , X m ) (X_1,X_2,\cdots,X_m) (X1,X2,⋯,Xm)和 ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,⋯,Yn)相互独立,若 h ( x 1 , x 2 , ⋯ , x m ) h(x_1,x_2,\cdots,x_m) h(x1,x2,⋯,xm), g ( y 1 , y 2 , ⋯ , y n ) g(y_1,y_2,\cdots,y_n) g(y1,y2,⋯,yn)是连续函数,则 h ( x 1 , x 2 , ⋯ , x m ) h(x_1,x_2,\cdots,x_m) h(x1,x2,⋯,xm)和 g ( y 1 , y 2 , ⋯ , y n ) g(y_1,y_2,\cdots,y_n) g(y1,y2,⋯,yn)也是相互独立的。
② 若随机变量 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn相互独立,把它们分为不相交的 k k k组,每组中的所有变量由一个连续函数复合而生成一个新的随机变量,则这 k k k个随机变量相互独立。
4. 随机向量的函数及其概率分布
二维离散型随机变量函数的分布
若 ( X , Y ) (X,Y) (X,Y)是二维离散型随机向量,其分布律为 p i j = P { X = x i , Y = y j } ( i , j = 1 , 2 , ⋯ ) p_{ij}=P\{X=x_i,Y=y_j\}(i,j=1,2,\cdots) pij=P{X=xi,Y=yj}(i,j=1,2,⋯),则 Z = X + Y Z=X+Y Z=X+Y的分布律为 P { Z = z k } = ∑ j P { X = z k − y j , Y = y j } P\{Z=z_k\}=\sum\limits_j P\{X=z_k-y_j,Y=y_j\} P{Z=zk}=j∑P{X=zk−yj,Y=yj}
X ~ P ( λ 1 ) , Y ~ P ( λ 2 ) X\text{\large\textasciitilde}P(\lambda_1),Y\text{\large\textasciitilde}P(\lambda_2) X~P(λ1),Y~P(λ2)且 X , Y X,Y X,Y相互独立 ⟹ Z = X + Y ~ P ( λ 1 + λ 2 ) \implies Z=X+Y\text{\large\textasciitilde}P(\lambda_1+\lambda_2) ⟹Z=X+Y~P(λ1+λ2)
二维连续型随机变量函数的分布
设 ( X , Y ) (X,Y) (X,Y)为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y)是其概率函数,又 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)是 X X X与 Y Y Y的函数,且 Z Z Z是连续型随机变量,则 F Z ( z ) = P { Z ≤ z } = P { g ( X , Y ) ≤ z } = ∬ g ( x , y ) ≤ z f ( x , y ) d x d y F_Z(z)=P\{Z\le z\}=P\{g(X,Y)\le z\}=\iint\limits_{g(x,y)\le z}f(x,y)\text{d}x\text{d}y FZ(z)=P{Z≤z}=P{g(X,Y)≤z}=g(x,y)≤z∬f(x,y)dxdy,再对 z z z求导即得概率密度函数 f Z ( z ) f_Z(z) fZ(z)。
X ~ N ( 0 , σ 2 ) , Y ~ N ( 0 , σ 2 ) ⟹ Z = X 2 + Y 2 X\text{\large\textasciitilde}N(0,\sigma^2),Y\text{\large\textasciitilde}N(0,\sigma^2)\implies Z=\sqrt{X^2+Y^2} X~N(0,σ2),Y~N(0,σ2)⟹Z=X2+Y2服从瑞利分布: f Z ( z ) = { z σ 2 e − z 2 2 σ 2 , z > 0 0 , 其他 f_Z(z)=\begin{cases}\frac{z}{\sigma^2}e^{-\frac{z^2}{2\sigma^2}},&z>0\\0,&\text{其他}\end{cases} fZ(z)={σ2ze−2σ2z2,0,z>0其他
几个重要函数的密度公式(设 X , Y X,Y X,Y为连续型随机变量,有概率密度函数 f ( x , y ) f(x,y) f(x,y)):
①随机变量和的概率密度公式:
Z
=
X
+
Y
⟹
f
Z
(
z
)
=
∫
−
∞
+
∞
f
(
x
,
z
−
x
)
d
x
=
∫
−
∞
+
∞
f
(
z
−
y
,
y
)
d
y
Z=X+Y\implies f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-x)\text{d}x=\int_{-\infty}^{+\infty}f(z-y,y)\text{d}y
Z=X+Y⟹fZ(z)=∫−∞+∞f(x,z−x)dx=∫−∞+∞f(z−y,y)dy
当
X
,
Y
X,Y
X,Y独立时可以拆开写:
Z
=
X
+
Y
⟹
f
Z
(
z
)
=
∫
−
∞
+
∞
f
X
(
x
)
f
Y
(
z
−
x
)
d
x
=
∫
−
∞
+
∞
f
X
(
z
−
y
)
f
Y
(
y
)
d
y
Z=X+Y\implies f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)\text{d}x=\int_{-\infty}^{+\infty}f_X(z-y)f_Y(y)\text{d}y
Z=X+Y⟹fZ(z)=∫−∞+∞fX(x)fY(z−x)dx=∫−∞+∞fX(z−y)fY(y)dy,该式称为独立变量之和的密度卷积公式
n n n个独立的正态随机变量的线性组合仍然是正态随机变量:若 X i ~ N ( μ i , σ i 2 ) , i = 1 , 2 , ⋯ , n X_i\text{\large\textasciitilde}N(\mu_i,\sigma_i^2),i=1,2,\cdots,n Xi~N(μi,σi2),i=1,2,⋯,n,则 ∑ i = 1 n a i X i ~ N ( ∑ i = 1 n a i μ i , ∑ i = 1 n a i 2 σ i 2 ) \sum\limits_{i=1}^n a_iX_i\text{\large\textasciitilde}N\left(\sum\limits_{i=1}^n a_i\mu_i,\sum\limits_{i=1}^n a_i^{\color{red}2}\sigma_i^{\color{red}2}\right) i=1∑naiXi~N(i=1∑naiμi,i=1∑nai2σi2)(称为正态分布的可加性)
②随机变量商的概率密度公式:
Z
=
X
Y
⟹
f
Z
(
z
)
=
∫
−
∞
+
∞
∣
y
∣
f
(
y
z
,
y
)
d
y
Z=\frac{X}{Y}\implies f_Z(z)=\int_{-\infty}^{+\infty}|y|f(yz,y)\text{d}y
Z=YX⟹fZ(z)=∫−∞+∞∣y∣f(yz,y)dy
当
X
,
Y
X,Y
X,Y独立时可以拆开写:
Z
=
X
Y
⟹
f
Z
(
z
)
=
∫
−
∞
+
∞
∣
y
∣
f
X
(
y
z
)
f
Y
(
y
)
d
y
Z=\frac{X}{Y}\implies f_Z(z)=\int_{-\infty}^{+\infty}|y|f_X(yz)f_Y(y)\text{d}y
Z=YX⟹fZ(z)=∫−∞+∞∣y∣fX(yz)fY(y)dy
③随机变量取最大值与最小值的分布:
对于二维随机向量
(
X
,
Y
)
(X,Y)
(X,Y),令
M
=
max
(
X
,
Y
)
M=\max(X,Y)
M=max(X,Y),
N
=
min
(
X
,
Y
)
N=\min(X,Y)
N=min(X,Y),则
F
M
(
z
)
=
F
(
z
,
z
)
F_M(z)=F(z,z)
FM(z)=F(z,z)
F
N
(
z
)
=
−
[
F
(
z
,
z
)
−
F
X
(
z
)
−
F
Y
(
z
)
]
=
F
X
(
z
)
+
F
Y
(
z
)
−
F
(
z
,
z
)
F_N(z)=-[F(z,z)-F_X(z)-F_Y(z)]=F_X(z)+F_Y(z)-F(z,z)
FN(z)=−[F(z,z)−FX(z)−FY(z)]=FX(z)+FY(z)−F(z,z)
若
X
X
X与
Y
Y
Y相互独立,则有
F
M
(
z
)
=
F
X
(
z
)
F
Y
(
z
)
F_M(z)=F_X(z)F_Y(z)
FM(z)=FX(z)FY(z)
F
N
(
z
)
=
1
−
[
1
−
F
X
(
z
)
]
[
1
−
F
Y
(
z
)
]
F_N(z)=1-[1-F_X(z)][1-F_Y(z)]
FN(z)=1−[1−FX(z)][1−FY(z)]
设 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn是 n n n个相互独立的随机变量, X i ~ F X i ( x i ) X_i\text{\large\textasciitilde}F_{X_i}(x_i) Xi~FXi(xi),设 M = max ( X 1 , X 2 , ⋯ , X n ) M=\max(X_1,X_2,\cdots,X_n) M=max(X1,X2,⋯,Xn), N = min ( X 1 , X 2 , ⋯ , X n ) N=\min(X_1,X_2,\cdots,X_n) N=min(X1,X2,⋯,Xn),则 F M ( z ) = F X 1 ( z ) F X 2 ( z ) ⋯ F X n ( z ) F_M(z)=F_{X_1}(z)F_{X_2}(z)\cdots F_{X_n}(z) FM(z)=FX1(z)FX2(z)⋯FXn(z) F N ( z ) = 1 − [ 1 − F X 1 ( z ) ] [ 1 − F X 2 ( z ) ] ⋯ [ 1 − F X n ( z ) ] F_N(z)=1-[1-F_{X_1}(z)][1-F_{X_2}(z)]\cdots[1-F_{X_n}(z)] FN(z)=1−[1−FX1(z)][1−FX2(z)]⋯[1−FXn(z)]特别地,当 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn是 n n n个独立同分布的随机变量时,有 F M ( z ) = [ F X 1 ( z ) ] n F N ( z ) = 1 − [ 1 − F X 1 ( z ) ] n F_M(z)=[F_{X_1}(z)]^n\qquad F_N(z)=1-[1-F_{X_1}(z)]^n FM(z)=[FX1(z)]nFN(z)=1−[1−FX1(z)]n若二者可导,则可得 M M M和 N N N的概率密度为 f M ( z ) = n [ F X 1 ( z ) ] n − 1 f ( x 1 ) f N ( z ) = n [ 1 − F X 1 ( z ) ] n − 1 f X 1 ( z ) f_M(z)=n[F_{X_1}(z)]^{n-1}f(x_1)\qquad f_N(z)=n[1-F_{X_1}(z)]^{n-1}f_{X_1}(z) fM(z)=n[FX1(z)]n−1f(x1)fN(z)=n[1−FX1(z)]n−1fX1(z)
第四章 随机变量的数字特征
1. 数学期望
数学期望的定义
若 X X X是离散型随机变量,其分布律为 P { X = x k } = p k ( k = 1 , 2 , ⋯ ) P\{X=x_k\}=p_k(k=1,2,\cdots) P{X=xk}=pk(k=1,2,⋯),若级数 ∑ k = 1 ∞ x k p k \sum\limits_{k=1}^{\infty}x_kp_k k=1∑∞xkpk绝对收敛,则称 ∑ k = 1 ∞ x k p k \sum\limits_{k=1}^{\infty}x_kp_k k=1∑∞xkpk为随机变量 X X X的数学期望,记作 E ( X ) E(X) E(X)。
若 X X X是连续型随机变量,其概率密度为 f ( x ) f(x) f(x),若积分 ∫ − ∞ + ∞ x f ( x ) d x \int_{-\infty}^{+\infty}xf(x)\text{d}x ∫−∞+∞xf(x)dx绝对收敛,则称 ∫ − ∞ + ∞ x f ( x ) d x \int_{-\infty}^{+\infty}xf(x)\text{d}x ∫−∞+∞xf(x)dx为 X X X的数学期望,记作 E ( X ) E(X) E(X)。
随机变量的函数的数学期望
设
g
(
x
)
g(x)
g(x)是连续函数:
(1) 若
X
X
X的分布律为
P
{
X
=
x
k
}
=
p
k
(
k
=
1
,
2
,
⋯
)
P\{X=x_k\}=p_k(k=1,2,\cdots)
P{X=xk}=pk(k=1,2,⋯),且
∑
k
=
1
∞
g
(
x
k
)
p
k
\sum\limits_{k=1}^{\infty}g(x_k)p_k
k=1∑∞g(xk)pk绝对收敛,则
E
[
g
(
X
)
]
=
∑
k
=
1
∞
g
(
x
k
)
p
k
E[g(X)]=\sum\limits_{k=1}^{\infty}g(x_k)p_k
E[g(X)]=k=1∑∞g(xk)pk;
(2) 若
X
X
X的概率密度为
f
(
x
)
f(x)
f(x),且
∫
−
∞
+
∞
g
(
x
)
f
(
x
)
d
x
\int_{-\infty}^{+\infty}g(x)f(x)\text{d}x
∫−∞+∞g(x)f(x)dx绝对收敛,则
E
[
g
(
X
)
]
=
∫
−
∞
+
∞
g
(
x
)
f
(
x
)
d
x
E[g(X)]=\int_{-\infty}^{+\infty}g(x)f(x)\text{d}x
E[g(X)]=∫−∞+∞g(x)f(x)dx。
设
g
(
x
,
y
)
g(x,y)
g(x,y)是二元连续函数:
(1) 若
(
X
,
Y
)
(X,Y)
(X,Y)的分布律为
P
{
X
=
x
i
,
Y
=
y
j
}
=
P
i
j
(
i
,
j
=
1
,
2
,
⋯
)
P\{X=x_i,Y=y_j\}=P_{ij}(i,j=1,2,\cdots)
P{X=xi,Y=yj}=Pij(i,j=1,2,⋯),且
∑
j
=
1
∞
∑
i
=
1
∞
g
(
x
i
,
y
j
)
p
i
j
\sum\limits_{j=1}^{\infty}\sum\limits_{i=1}^{\infty}g(x_i,y_j)p_{ij}
j=1∑∞i=1∑∞g(xi,yj)pij绝对收敛,则
E
[
g
(
X
,
Y
)
]
=
∑
j
=
1
∞
∑
i
=
1
∞
g
(
x
i
,
y
j
)
p
i
j
E[g(X,Y)]=\sum\limits_{j=1}^{\infty}\sum\limits_{i=1}^{\infty}g(x_i,y_j)p_{ij}
E[g(X,Y)]=j=1∑∞i=1∑∞g(xi,yj)pij;
(2) 若
(
X
,
Y
)
(X,Y)
(X,Y)的概率密度为
f
(
x
,
y
)
f(x,y)
f(x,y),且
∫
−
∞
+
∞
∫
−
∞
+
∞
g
(
x
,
y
)
f
(
x
,
y
)
d
x
d
y
\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)\text{d}x\text{d}y
∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy绝对收敛,则
E
[
g
(
X
,
Y
)
]
=
∫
−
∞
+
∞
∫
−
∞
+
∞
g
(
x
,
y
)
f
(
x
,
y
)
d
x
d
y
E[g(X,Y)]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)\text{d}x\text{d}y
E[g(X,Y)]=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy。
数学期望的性质
(1)
E
(
C
)
=
C
E(C)=C
E(C)=C(
C
C
C为常数)
(2)
E
(
C
X
)
=
C
E
(
X
)
E(CX)=CE(X)
E(CX)=CE(X)
(3)
E
(
X
+
Y
)
=
E
(
X
)
+
E
(
Y
)
E(X+Y)=E(X)+E(Y)
E(X+Y)=E(X)+E(Y)(不论是否独立都成立)
(4) 若
X
X
X与
Y
Y
Y相互独立,则
E
(
X
Y
)
=
E
(
X
)
E
(
Y
)
E(XY)=E(X)E(Y)
E(XY)=E(X)E(Y)
2. 方差
方差与标准差的定义
方差:对随机变量
X
X
X,若
E
{
[
X
−
E
(
X
)
]
2
}
E\{[X-E(X)]^{\color{red}2}\}
E{[X−E(X)]2}存在,则称
E
{
[
X
−
E
(
X
)
]
2
}
E\{[X-E(X)]^{\color{red}2}\}
E{[X−E(X)]2}为
X
X
X的方差,记作
Var
(
X
)
\text{Var}(X)
Var(X)或
D
(
X
)
D(X)
D(X)
标准差:称
σ
(
X
)
=
D
(
X
)
\sigma(X)=\sqrt{D(X)}
σ(X)=D(X)为
X
X
X的标准差,其量纲与
X
X
X相同
方差的等价公式: D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^2)-[E(X)]^2 D(X)=E(X2)−[E(X)]2
方差的性质
(1)
D
(
a
)
=
0
D(a)=0
D(a)=0(
a
a
a为常数)
(2)
D
(
a
X
)
=
a
2
D
(
X
)
D(aX)=a^{\color{red}2}D(X)
D(aX)=a2D(X)
(3) 若
X
X
X与
Y
Y
Y相互独立(可以改为
X
X
X与
Y
Y
Y不相关),则
D
(
X
±
Y
)
=
D
(
X
)
±
D
(
Y
)
D(X\pm Y)=D(X)\pm D(Y)
D(X±Y)=D(X)±D(Y)
(4)
D
(
X
)
=
0
⟺
P
{
X
=
E
(
X
)
}
=
1
D(X)=0\iff P\{X=E(X)\}=1
D(X)=0⟺P{X=E(X)}=1
常见随机变量的数学期望和方差
分布 | 数学期望 | 方差 |
---|---|---|
(0-1)分布 B ( 1 , p ) B(1,p) B(1,p) | p p p | p ( 1 − p ) p(1-p) p(1−p) |
二项分布 B ( n , p ) B(n,p) B(n,p) | n p np np | n p ( 1 − p ) np(1-p) np(1−p) |
泊松分布 P ( λ ) P(\lambda) P(λ) | λ \lambda λ | λ \lambda λ |
几何分布 G e ( p ) Ge(p) Ge(p) | 1 p \frac{1}{p} p1 | 1 − p p 2 \frac{1-p}{p^2} p21−p |
正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) | μ \mu μ | σ 2 \sigma^2 σ2( σ \sigma σ就是标准差) |
均匀分布 U ( a , b ) U(a,b) U(a,b) | a + b 2 \frac{a+b}{2} 2a+b | ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(b−a)2(结合均质细杆绕中心轴的转动惯量来理解) |
指数分布 E x p ( λ ) Exp(\lambda) Exp(λ) | 1 λ \frac{1}{\lambda} λ1 | 1 λ 2 \frac{1}{\lambda^2} λ21 |
3. 协方差、相关系数和矩
协方差与相关系数
对于二维随机向量
(
X
,
Y
)
(X,Y)
(X,Y):
称
Cov
(
X
,
Y
)
=
E
{
[
X
−
E
(
X
)
]
[
Y
−
E
(
Y
)
]
}
\text{Cov}(X,Y)=E\{[X-E(X)][Y-E(Y)]\}
Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}为
X
X
X与
Y
Y
Y的协方差(前提是该数学期望存在)。
Cov
(
X
,
X
)
=
D
(
X
)
\text{Cov}(X,X)=D(X)
Cov(X,X)=D(X)
Cov
(
X
,
Y
)
=
E
(
X
Y
)
−
E
(
X
)
E
(
Y
)
\text{Cov}(X,Y)=E(XY)-E(X)E(Y)
Cov(X,Y)=E(XY)−E(X)E(Y)协方差的性质:设
X
1
,
X
2
,
X
,
Y
X_1,X_2,X,Y
X1,X2,X,Y为随机变量,
a
,
b
a,b
a,b为常数,则
(1)
Cov
(
a
,
X
)
=
0
\text{Cov}(a,X)=0
Cov(a,X)=0
(2)
Cov
(
X
,
Y
)
=
Cov
(
Y
,
X
)
\text{Cov}(X,Y)=\text{Cov}(Y,X)
Cov(X,Y)=Cov(Y,X)
(3)
Cov
(
a
X
,
b
Y
)
=
a
b
Cov
(
X
,
Y
)
\text{Cov}(aX,bY)=ab\,\text{Cov}(X,Y)
Cov(aX,bY)=abCov(X,Y)
(4)
Cov
(
X
1
+
X
2
,
Y
)
=
Cov
(
X
1
,
Y
)
+
Cov
(
X
2
,
Y
)
\text{Cov}(X_1+X_2,Y)=\text{Cov}(X_1,Y)+\text{Cov}(X_2,Y)
Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
(5) 若
X
X
X与
Y
Y
Y相互独立,则
Cov
(
X
,
Y
)
=
0
\text{Cov}(X,Y)=0
Cov(X,Y)=0(反之不一定成立)
(6) 若
E
(
X
2
)
E(X^2)
E(X2),
E
(
Y
2
)
E(Y^2)
E(Y2)存在, 则
[
E
(
X
Y
)
]
2
≤
E
(
X
2
)
E
(
Y
2
)
[E(XY)]^2\le E(X^2)E(Y^2)
[E(XY)]2≤E(X2)E(Y2);特别地,有柯西-施瓦茨不等式:
[
Cov
(
X
,
Y
)
]
2
≤
D
(
X
)
D
(
Y
)
[\text{Cov}(X,Y)]^2\le D(X)D(Y)
[Cov(X,Y)]2≤D(X)D(Y)
方差和/差的公式:
D
(
X
±
Y
)
=
D
(
X
)
+
D
(
Y
)
±
2
Cov
(
X
,
Y
)
D(X\pm Y)=D(X)+D(Y)\pm 2\text{Cov}(X,Y)
D(X±Y)=D(X)+D(Y)±2Cov(X,Y)相关系数:若
D
(
X
)
>
0
D(X)>0
D(X)>0,
D
(
Y
)
>
0
D(Y)>0
D(Y)>0,则称
ρ
(
X
,
Y
)
=
Cov
(
X
,
Y
)
D
(
X
)
D
(
Y
)
=
Cov
(
X
,
Y
)
σ
(
X
)
σ
(
Y
)
\rho(X,Y)=\frac{\text{Cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=\frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}
ρ(X,Y)=D(X)D(Y)Cov(X,Y)=σ(X)σ(Y)Cov(X,Y)为
X
X
X与
Y
Y
Y的相关系数
相关系数的性质:
(1) 若
X
X
X与
Y
Y
Y相互独立,则
ρ
(
X
,
Y
)
=
0
\rho(X,Y)=0
ρ(X,Y)=0;
(2)
−
1
≤
ρ
(
X
,
Y
)
≤
1
-1\le\rho(X,Y)\le 1
−1≤ρ(X,Y)≤1;
(3)
∣
ρ
(
X
,
Y
)
=
1
∣
⟺
∃
|\rho(X,Y)=1|\iff\exists
∣ρ(X,Y)=1∣⟺∃常数
a
,
b
a,b
a,b,使得
P
{
a
+
b
X
}
=
1
P\{a+bX\}=1
P{a+bX}=1
ρ ( X , Y ) \rho(X,Y) ρ(X,Y)是反映随机变量 X X X和 Y Y Y之间线性相关程度的量
若 ρ ( X , Y ) = 0 \rho(X,Y)=0 ρ(X,Y)=0,则称 X X X与 Y Y Y不相关
二维正态分布 N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho) N(μ1,μ2;σ12,σ22;ρ)的第五个参数 ρ \rho ρ恰好是 X X X与 Y Y Y的相关系数
矩
设
X
,
Y
X,Y
X,Y为随机变量且下面提到的期望都存在,
k
>
0
k>0
k>0,
l
>
0
l>0
l>0:
(1)
X
X
X的
k
k
k阶原点矩:
α
k
=
E
(
X
k
)
\alpha_k=E(X^k)
αk=E(Xk)(
E
(
X
)
E(X)
E(X)为
1
1
1阶原点矩)
(2)
X
X
X的
k
k
k阶中心矩:
μ
k
=
E
[
(
X
−
E
(
X
)
)
k
]
\mu_k=E[(X-E(X))^k]
μk=E[(X−E(X))k](
D
(
X
)
D(X)
D(X)为二阶中心矩,
D
(
X
)
=
μ
2
=
α
2
−
α
1
2
D(X)=\mu_2=\alpha_2-\alpha_1^2
D(X)=μ2=α2−α12)
(3)
X
,
Y
X,Y
X,Y的
k
+
l
k+l
k+l阶混合原点矩:
α
k
l
=
E
(
X
k
Y
l
)
\alpha_{kl}=E(X^kY^l)
αkl=E(XkYl)
(4)
X
,
Y
X,Y
X,Y的
k
+
l
k+l
k+l阶混合中心矩:
μ
k
l
=
E
[
(
X
−
E
(
X
)
)
k
(
Y
−
E
(
Y
)
)
l
]
\mu_{kl}=E[(X-E(X))^k(Y-E(Y))^l]
μkl=E[(X−E(X))k(Y−E(Y))l]
X X X与 Y Y Y的协方差 Cov ( X , Y ) = μ 11 \text{Cov}(X,Y)=\mu_{11} Cov(X,Y)=μ11,相关系数 ρ ( X , Y ) = μ 11 μ 20 μ 02 \rho(X,Y)=\frac{\mu_{11}}{\sqrt{\mu_{20}}\sqrt{\mu_{02}}} ρ(X,Y)=μ20μ02μ11
4. 协方差矩阵
设 n n n维随机向量 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,⋯,Xn)的二阶混合中心矩 v i j = Cov ( X i , X j ) ( i , j = 1 , 2 , ⋯ , n ) v_{ij}=\text{Cov}(X_i,X_j)(i,j=1,2,\cdots,n) vij=Cov(Xi,Xj)(i,j=1,2,⋯,n)都存在(即各变量之间的协方差都存在),则称矩阵 V = ( v 11 v 12 ⋯ v 1 n v 21 v 22 ⋯ v 2 n ⋮ ⋮ ⋮ v n 1 v n 2 ⋯ v n n ) \bm{V}=\begin{pmatrix}v_{11}&v_{12}&\cdots&v_{1n}\\v_{21}&v_{22}&\cdots&v_{2n}\\\vdots&\vdots&&\vdots\\v_{n1}&v_{n2}&\cdots&v_{nn}\end{pmatrix} V= v11v21⋮vn1v12v22⋮vn2⋯⋯⋯v1nv2n⋮vnn 为 n n n维随机向量 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,⋯,Xn)的协方差矩阵。
V \bm{V} V是对称矩阵,且 V \bm{V} V主对角元上的元素 v i i = D ( X i ) v_{ii}=D(X_i) vii=D(Xi)。
n
n
n维正态分布:
设
V
\bm{V}
V为
n
n
n阶正定对称阵,
μ
=
(
μ
1
,
μ
2
,
⋯
,
μ
n
)
\bm{\mu}=(\mu_1,\mu_2,\cdots,\mu_n)
μ=(μ1,μ2,⋯,μn)为
n
n
n维已知向量。记
x
=
(
x
1
,
x
2
,
⋯
,
x
n
)
∈
R
n
\bm{x}=(x_1,x_2,\cdots,x_n)\in\mathbb R^n
x=(x1,x2,⋯,xn)∈Rn。若
n
n
n维随机向量
X
=
(
X
1
,
X
2
,
⋯
,
X
n
)
\bm{X}=(X_1,X_2,\cdots,X_n)
X=(X1,X2,⋯,Xn)的概率密度为
f
(
x
)
=
1
(
2
π
)
n
2
∣
V
∣
1
2
exp
{
−
1
2
(
x
−
μ
)
V
−
1
(
x
−
μ
)
T
}
f(\bm{x})=\frac{1}{(2\pi)^{\frac{n}{2}}|\bm{V}|^{\frac{1}{2}}}\exp\left\{-\frac{1}{2}(\bm{x}-\bm{\mu})\bm{V}^{-1}(\bm{x}-\bm{\mu})^T\right\}
f(x)=(2π)2n∣V∣211exp{−21(x−μ)V−1(x−μ)T}则称
X
\bm{X}
X服从
n
n
n维正态分布,记作
X
=
(
X
1
,
X
2
,
⋯
,
X
n
)
~
N
(
μ
,
V
)
\bm{X}=(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})
X=(X1,X2,⋯,Xn)~N(μ,V)。
n
n
n维正态分布的基本性质:
设
X
=
(
X
1
,
X
2
,
⋯
,
X
n
)
~
N
(
μ
,
V
)
\bm{X}=(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})
X=(X1,X2,⋯,Xn)~N(μ,V),则:
(1)
μ
i
=
E
(
X
i
)
(
i
=
1
,
2
,
⋯
,
n
)
\mu_i=E(X_i)(i=1,2,\cdots,n)
μi=E(Xi)(i=1,2,⋯,n)
(2)
V
=
(
v
i
j
)
n
×
n
\bm{V}=(v_{ij})_{n\times n}
V=(vij)n×n是
X
\bm{X}
X的协方差矩阵,且
D
(
X
i
)
=
v
i
i
D(X_i)=v_{ii}
D(Xi)=vii,
Cov
(
X
i
,
X
j
)
=
v
i
j
(
i
,
j
=
1
,
2
,
⋯
,
n
)
\text{Cov}(X_i,X_j)=v_{ij}(i,j=1,2,\cdots,n)
Cov(Xi,Xj)=vij(i,j=1,2,⋯,n)
(3)
X
i
~
N
(
μ
i
,
v
i
i
)
X_i\text{\large\textasciitilde}N(\mu_i,v_{ii})
Xi~N(μi,vii)
(4)
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn相互独立
⟺
X
1
,
X
2
,
⋯
,
X
n
{\color{red}\iff}X_1,X_2,\cdots,X_n
⟺X1,X2,⋯,Xn两两互不相关
⟺
V
=
diag
(
v
11
,
v
22
,
⋯
,
v
n
n
)
\iff\bm{V}=\text{diag}(v_{11},v_{22},\cdots,v_{nn})
⟺V=diag(v11,v22,⋯,vnn)
(5) 若
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn相互独立,且各
X
i
~
N
(
μ
i
,
σ
i
2
)
X_i\text{\large\textasciitilde}N(\mu_i,\sigma_i^2)
Xi~N(μi,σi2),则
(
X
1
,
X
2
,
⋯
,
X
n
)
~
N
(
μ
,
V
)
(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})
(X1,X2,⋯,Xn)~N(μ,V),其中
μ
=
(
μ
1
,
μ
2
,
⋯
,
μ
n
)
\bm{\mu}=(\mu_1,\mu_2,\cdots,\mu_n)
μ=(μ1,μ2,⋯,μn),
V
=
diag
(
σ
1
2
,
σ
2
2
,
⋯
,
σ
n
2
)
\bm{V}=\text{diag}(\sigma_1^2,\sigma_2^2,\cdots,\sigma_n^2)
V=diag(σ12,σ22,⋯,σn2)
(6)
(
X
1
,
X
2
,
⋯
,
X
n
)
~
N
(
μ
,
V
)
⟺
X
1
,
X
2
,
⋯
,
X
n
(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})\iff X_1,X_2,\cdots,X_n
(X1,X2,⋯,Xn)~N(μ,V)⟺X1,X2,⋯,Xn的任一非零线性组合
l
1
X
1
+
l
2
X
2
+
⋯
+
l
n
X
n
l_1X_1+l_2X_2+\cdots+l_nX_n
l1X1+l2X2+⋯+lnXn服从一维正态分布
(7)(正态随机向量的线性变换不变性) 若
(
X
1
,
X
2
,
⋯
,
X
n
)
~
N
(
μ
,
V
)
(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})
(X1,X2,⋯,Xn)~N(μ,V),则
Y
=
A
X
\bm{Y}=\bm{AX}
Y=AX服从
m
m
m维正态分布,其中
A
\bm{A}
A为
n
×
m
n\times m
n×m常数矩阵
参考数目
《概率论与数理统计》施雨等编