【运输时间】

566 篇文章

已下架不支持订阅

472 篇文章

已下架不支持订阅

题目解析

本题需要注意的是:速度快的车追上前车后,是可以和前车并行的。即本题的:

一条不能超车的单行道

指的应该是"单向"车道,即可能有多条单向车道,支持多辆车并行。

因此本题的解题就很简单了,由于后车不能超过前车,因此:

  • 如果后车正常行驶情况下,比前车更早到达,则会被前车阻碍,此时后车到达终点时刻,和前车一致
  • 如果后车正常行驶情况下,比前车更晚到达,则不会被前车阻碍,此时后车到达终点时刻,就是自己正常行驶到达终点的时刻

本题要求输出的是:到达目的地花费的时间 = 到达时刻 - 出发时刻

另外,需要注意,本题输出可能是小数,但是本题并没有说保留几位有效小数,我这边默认保留3位有效小数,四舍五入,实际考试时视情况改动。

JS算法源码

const rl = require("readline").createInterface({ input: process.stdin });
var iter = rl[Symbol.asyncIterator]();
const readline = async () => (await iter.next()).value;

void (async function () {
  const [m,

已下架不支持订阅

### 柔性车间调度中考虑运输时间的方法和策略 #### 运输时间的影响因素分析 在柔性作业车间调度(Flexible Job Shop Scheduling Problem, FJSP)中,运输时间是指工件从一台机器转移到另一台所需的时间。影响运输时间的因素众多,包括但不限于搬运设备的速度、路径规划以及交通状况等[^1]。 #### 关键路径的选择与优化 为了简化问题复杂度,在某些情况下可以假设最晚搬运机器人AGV(Automated Guided Vehicle)所对应的任务链路作为关键路径来处理。这种做法能够有效减少计算量并提高求解效率,尤其是在面对大规模实例时显得尤为重要[^2]。 #### 多目标优化模型构建 当引入运输时间为考量维度之一后,则需要建立一个多目标函数来进行综合评价。通常会涉及到最小化最大完工时间(Makespan),即整个生产过程完成所需的总时间;同时也需兼顾其他性能指标如能耗、成本效益等方面的要求。通过调整不同权重系数的方式使得各个子目标之间达到平衡状态从而获得最优解集。 #### 改进型启发式算法应用 针对含有运输时间变量的FJSP难题,研究者们提出了多种改进版本的元启发式搜索技术,比如基于鲸鱼群体行为模拟设计出来的新型智能优化方法——鲸鱼群算法(Whale Swarm Algorithm, WSA)[^1]。该类算法能够在保持全局探索能力的同时增强局部开发精度,进而更有效地寻找到满足实际需求的最佳方案组合。 ```python import numpy as np def calculate_transport_time(task_sequence, transport_speed=1.0): """ 计算给定任务序列下的累积运输时间 参数: task_sequence (list of tuples): [(machine_id_1, processing_time_1), ...] transport_speed (float): AGV行驶速度,默认值为单位距离每秒 返回: float: 总运输时间 """ total_transport_time = 0 prev_machine_location = None for machine_id, _ in task_sequence: if prev_machine_location is not None and machine_id != prev_machine_location: distance_between_machines = get_distance(prev_machine_location, machine_id) travel_duration = distance_between_machines / transport_speed total_transport_time += travel_duration prev_machine_location = machine_id return round(total_transport_time, 2) # 示例调用 tasks = [('M1', 5), ('M3', 8), ('M2', 7)] print(f"Total Transport Time: {calculate_transport_time(tasks)} seconds") ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值