岭回归(l2约束的高斯核最小二乘)

本文通过Python实现了一个基于高斯核的岭回归算法示例。该示例首先生成了正弦函数上的数据点,并加入了随机噪声。然后,使用岭回归算法对这些数据点进行拟合,展示了普通高斯核和带l2约束的高斯核的效果对比。通过不同的l2正则化参数,观察到了模型在测试集上的表现变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import math
import numpy as np
import matplotlib.pyplot as plt


def gener(sta, end, num):  # 生成y=x^2的测试集
    # 随机干扰因子
    sampleNo = num
    mu = 0.01
    sigma = 0.5
    np.random.seed(0)
    s = np.random.normal(mu, sigma, sampleNo)

    X = np.linspace(sta, end, num)  # 在返回(-1, 1)范围内的等差序列
    pix = np.pi * X
    Y = np.sin(pix) / pix + 0.1 * X + s
    x = X.reshape(-1, 1)
    y = Y.reshape(-1, 1)

    return x, y, num


def ridge(X, x, NUM, num):
    x2 = x * x  # 样本集的参数 逐个求平方
    X2 = X * X  # 测试集的参数 逐个求平方
    h = 0.3  # 高斯核的带宽
    hh = 2 * h * h

    temp = np.tile(X2, num) + np.tile(np.matrix(x2).T, (NUM, 1)) - 2 * X * x.T
    k = np.exp(-temp / hh)
    return k


if __name__ == '__main__':
    x, y, num = gener(-3, 3, 50)
    X, Y, NUM = gener(-3, 3, 1000)
    plt.plot(X, Y)
    k = ridge(x, x, num, num)
    K = ridge(X, x, NUM, num)
    print(y.shape)

    # 普通高斯核
    t1 = y.T * np.linalg.pinv(k)
    F1 = K * t1.T
    plt.plot(X, F1, label='normal Gaussian')
    # 带l2约束的高斯核
    for i in range(10):
        l = i * 0.1
        t2 = (k * y).T * np.linalg.pinv((k * k.T + l * np.eye(num)))
        F2 = K * t2.T
        plt.plot(X, F2, label='l2 Gaussian '+str(round(l,2)))

    plt.legend()
    plt.show()

在这里插入图片描述

<think>好的,我需要回答用户关于“欠测量的最小二乘算法流程图”的查询。首先,我需要理解“欠测量”是什么意思。根据我的知识,欠测量可能是指测量数据不足,即样本数量少于变量数,导致系统欠定。这种情况下,普通最小二乘法可能无法直接应用,需要正则化或其他方法。 接下来,我需要确认最小二乘法在欠定情况下的处理方法。通常,在欠定系统中,解有无穷多,所以需要添加约束,比如L1或L2正则化,对应Lasso或岭回归。但用户提到的是“欠测量最小二乘算法”,可能指的就是针对这种情况的改进算法,比如正则化最小二乘或者使用伪逆矩阵。 然后,用户需要流程图。流程图需要展示算法的主要步骤,比如问题建模、正则化项选择、目标函数构建、求解方法(如梯度下降、伪逆计算等)、结果输出。我需要参考现有的最小二乘算法流程,结合正则化处理的部分。 同时,用户提到了引用内容中的高斯牛顿法和LM算法,这可能与非线性最小二乘有关,但欠测量更可能是在线性背景下。不过需要考虑是否需要涉及非线性情况。 需要确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并正确引用参考文献。例如,引用[3]提到LM算法用于非线性优化,可能在欠测量问题中如果涉及非线性模型会用到,但如果是线性的,可能更多使用伪逆或正则化。 最后,生成相关问题,需要围绕欠测量最小二乘的应用、正则化选择、算法比较、软件实现等方向提问。</think>### 欠测量最小二乘算法流程图说明 在欠测量(即样本数$m$小于变量数$n$,$m<n$)场景下,传统最小二乘法无法直接求解,需引入正则化或稀疏性约束[^3]。以下是该算法的核心流程图及说明: #### 算法流程图 ```plaintext 开始 │ ├─ 1. 输入欠定矩阵$A \in \mathbb{R}^{m×n}$和观测值$b \in \mathbb{R}^m$(m < n) │ ├─ 2. 选择正则化方法: │ ├─ (a) L2正则化(岭回归):目标函数$||Ax - b||^2 + \lambda ||x||^2$ │ └─ (b) L1正则化(LASSO):目标函数$||Ax - b||^2 + \lambda ||x||_1$ │ ├─ 3. 构建优化问题并求解: │ ├─ 若为L2正则化 → 解析解$x^* = (A^TA + \lambda I)^{-1}A^Tb$ │ └─ 若为L1正则化 → 使用迭代算法(如坐标下降法、ADMM) │ ├─ 4. 输出解$x^*$并验证残差$||Ax^* - b||$ │ 结束 ``` #### 关键数学表达 1. **欠定系统描述** $$ Ax = b \quad (A \in \mathbb{R}^{m×n}, \text{rank}(A)=m < n) $$ 此时解空间维度为$n - m$,需通过正则化确定唯一解。 2. **L2正则化(Tikhonov正则化)** $$ \min_x ||Ax - b||^2 + \lambda ||x||^2 $$ 解析解通过修正后的正规方程求得。 3. **L1正则化(稀疏解)** $$ \min_x ||Ax - b||^2 + \lambda ||x||_1 $$ 需使用凸优化算法求解,如图3所示流程。 #### 应用场景 - 压缩感知(信号恢复) - 高维数据特征选择 - 图像重建中的欠采样问题 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值