今天的每日一题太简单了,就不记录了。之前2月28日的一直没写,今天补上:
标题:Shortest Common Supersequence
题目:
Given two strings str1
and str2
, return the shortest string that has both str1
and str2
as subsequences. If there are multiple valid strings, return any of them.
A string s
is a subsequence of string t
if deleting some number of characters from t
(possibly 0
) results in the string s
.
Example 1:
Input: str1 = "abac", str2 = "cab" Output: "cabac" Explanation: str1 = "abac" is a subsequence of "cabac" because we can delete the first "c". str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac". The answer provided is the shortest such string that satisfies these properties.
Example 2:
Input: str1 = "aaaaaaaa", str2 = "aaaaaaaa" Output: "aaaaaaaa"
Constraints:
1 <= str1.length, str2.length <= 1000
str1
andstr2
consist of lowercase English letters.
解题思路:要求两个序列的最短公共超序列,则在构建超序列时需要保持原序列元素的相对位置。试想用两个指针分别在两个序列上遍历,按顺序将其元素添加进超序列中。但遍历的顺序怎么样呢?如何能满足“最短”的条件呢?很简单,要满足“最短”,则两个序列的公共元素只需要添加一次。这样就拆解成先求最长公共子序列的子问题了。
1、求最长公共子序列用动态规划算法:
- 创建一个二维数组:dp[m+1][n+1],其中m和n分别是两个字符串的长度
- 第一行第一列的dp[0][j], dp[i][0]都是0,因为空元素与其它序列的公共子序列肯定为空
- 第二行和第二列开始,遍历整个dp矩阵,如果两个序列当前字符相等,则dp[i][j] 选取dp[i-1][j-1]+1, dp[i-1][j], dp[i][j-1]这三个值的最大值;如果两个序列当前字符不相等,则dp[i][j]选取dp[i-1][j]和dp[i][j-1]这两个值的最大值
- 最后,dp[m][n]则为最长公共子序列的长度
2、通过步骤1中求出的dp矩阵结果,从右下角反向构建公共超序列。如果当前字符相等,直接添加到字符串中,如果不相等,选择dp[i][j+1]和dp[i+1][j] (这里i对应第一个字符串的(i-1)位)大的那个字符添加到结果字符串中。如下表所示:
dp矩阵 | c | a | b | |
0 | 0 | 0 | 0 | |
a | 0 | 0 | 1 | 1 |
b | 0 | 0 | 1 | 2 |
a | 0 | 0 | 1 | 2 |
c | 0 | 1 | 1 | 2 |
str1 = "abac", str2="cab", 得出的dp矩阵如上表所示,在最右下角处,由于dp[i-1][j] > dp[i][j-1], 因此选择字符'c'放入超序列中,因为字符'b'是公共子序列中的字符,在j方向已经到了,需要遍历i方向一直到也遇到字符‘b’为止。
代码如下:
class Solution {
public:
string shortestCommonSupersequence(string str1, string str2) {
// 计算最长公共子序列的动态规划矩阵
vector<vector<int>> dp(str1.length()+1, vector<int>(str2.length()+1, 0));
for (int i = 1; i <= str1.length(); i++){
for (int j = 1; j <= str2.length(); j++){
if (str1[i-1] == str2[j-1]) {
dp[i][j] = max(dp[i-1][j-1]+1, max(dp[i-1][j], dp[i][j-1]));
} else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
}
// 构建最小公共超序列
string res = "";
int i = str1.length()-1, j = str2.length()-1;
while(i >= 0 && j >= 0) {
if (str1[i] == str2[j]) {
res.push_back(str1[i--]);
j--;
} else if (dp[i][j+1] > dp[i+1][j]){
res.push_back(str1[i--]);
} else {res.push_back(str2[j--]);}
}
while(i >= 0) res.push_back(str1[i--]);
while(j >= 0) res.push_back(str2[j--]);
reverse(res.begin(), res.end());
return res;
}
};
时间和空间复杂度都是O(M*N)