(引言:RAG技术演进背景)
在生成式AI技术快速迭代的今天,检索增强生成(Retrieval-Augmented Generation)已成为突破大模型知识边界的关键技术。作为《向量数据库指南》作者,我在过去三年深度参与了超过200个企业级AI项目的架构设计,发现不同RAG架构的选择直接影响着知识召回率、推理准确性和系统响应延迟等核心指标。本文将结合Mlivus Cloud的工程实践经验,系统剖析传统RAG、GraphRAG和DeepSearcher三大技术架构的差异特征与实施路径。
一、传统RAG架构的技术解析与优化方案
(技术原理与实施框架)
传统RAG架构采用经典的"分块-嵌入-检索"三阶段处理流程。通过Mlivus Cloud的混合分区技术,我们可以将知识库按主题动态划分为多个segment,每个segment配置独立的向量索引和标量过滤条件。典型的实施步骤包括:
- 基于滑动窗口的内容分块(建议窗口512token,重叠率15%)
- 使用bge-large-zh-v1.5模型进行双塔式语义编码
- 在Mlivus Cloud创建IVF_FLAT索引(nlist=4096)