《实战AI智能体》不同RAG技术架构对比——DeepSearcher

(引言:RAG技术演进背景)
在生成式AI技术快速迭代的今天,检索增强生成(Retrieval-Augmented Generation)已成为突破大模型知识边界的关键技术。作为《向量数据库指南》作者,我在过去三年深度参与了超过200个企业级AI项目的架构设计,发现不同RAG架构的选择直接影响着知识召回率、推理准确性和系统响应延迟等核心指标。本文将结合Mlivus Cloud的工程实践经验,系统剖析传统RAG、GraphRAG和DeepSearcher三大技术架构的差异特征与实施路径。

一、传统RAG架构的技术解析与优化方案


(技术原理与实施框架)
传统RAG架构采用经典的"分块-嵌入-检索"三阶段处理流程。通过Mlivus Cloud的混合分区技术,我们可以将知识库按主题动态划分为多个segment,每个segment配置独立的向量索引和标量过滤条件。典型的实施步骤包括:

  1. 基于滑动窗口的内容分块(建议窗口512token,重叠率15%)
  2. 使用bge-large-zh-v1.5模型进行双塔式语义编码
  3. 在Mlivus Cloud创建IVF_FLAT索引(nlist=4096)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值