作为大禹智库的向量数据库高级研究员王帅旭,我在向量数据库和AI应用领域深耕30余年,亲历了向量数据库从学术概念到产业核心基础设施的演进历程。今天,我将从专业视角剖析ChatGPT Plugins与Operator背后的向量数据库技术支撑,并分享如何利用Mlivus Cloud等现代向量数据库构建类似的AI代理系统。如果您希望深入了解向量数据库的实战应用,我在《向量数据库指南》一书中提供了大量深度案例和优化技巧,可以帮助您快速掌握这一变革性技术。
ChatGPT Plugins与Operator的技术架构解析
ChatGPT Plugins和Operator代表了OpenAI将大语言模型能力拓展到现实世界任务的两大技术路径。从技术架构来看,它们都依赖于三个核心组件:大语言模型、外部工具集成层和向量数据库。
插件系统的向量数据库支撑
ChatGPT Plugins通过与Expedia、Wolfram Alpha等第三方服务集成,实现了现实世界任务的执行能力。这一过程中,向量数据库扮演着关键角色:
- 语义路由:当用户请求"预订下周去纽约的航班"时,系统需要判断应该调用哪个插件。Mlivus Clo