【PyTorch学习笔记】一、两个全连接层的感知机实现(损失函数及优化器的使用)

demo1 

import torch
from torch import nn
# 全连接类
class Linear(nn.Module):
    def __init__(self, in_dim, out_dim):
        super(Linear, self).__init__()
        # Parameter 为Tensor的构造方法,默认求导
        # w b 为网络需要学习的参数
        self.w = nn.Parameter(torch.randn(in_dim, out_dim))
        self.b = nn.Parameter(torch.randn(out_dim))
    # 前向传播的实现
    def forward(self, x):
        x = x.matmul(self.w)   # x*w  .matmul实现矩阵相乘
        y = x + self.b.expand_as(x)  # y = wx + b  .expand_as 保证b和x的矩阵形状一致
        return y

# 一
#两层感知机类
#nn.Module(自动学习参数)与nn.functional(不自动学习参数)都提供了很多网络层和函数功能。
# class Perception(nn.Module):
#     def __init__(self, in_dim, hid_dim, out_dim):
#         super(Perception, self).__init__()
#         # 定义了两层全连接层 调用了上个函数Linear的子module
#         self.layer1 = Linear(in_dim, hid_dim)
#         self.layer2 = Linear(hid_dim, out_dim)
#     def forward(
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值