浮点数运算精度丢失问题
float a = 2.0f - 1.9f;
float b = 1.8f - 1.7f;
System.out.println(a);// 0.100000024
System.out.println(b);// 0.099999905
System.out.println(a == b);// false
精度为啥会丢失?
计算机是二进制存储,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,这也就解释了浮点数没有办法用二进制精确表示。参考十进制向二进制转换过程。
// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...
BigDecimal
实现了对浮点数的运算,不会造成精度丢失。通常用于金额的处理。
BigDecimal使用注意:
阿里巴巴 Java 开发手册》中提到:浮点数之间的等值判断,基本数据类型不能用 == 来比较,包装数据类型不能用 equals 来判断。BigDecimal(double)构造方法不要使用,使用new BigDecimal(string)或BigDecimal.valueOf(double)。
加减乘除运算
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
System.out.println(a.add(b));// 1.9
System.out.println(a.subtract(b));// 0.1
System.out.println(a.multiply(b));// 0.90
System.out.println(a.divide(b));// 无法除尽,抛出 ArithmeticException 异常
System.out.println(a.divide(b, 2, RoundingMode.HALF_UP));// 1.11
保留规则
public enum RoundingMode {
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -2 , -2.5 -> -3
UP(BigDecimal.ROUND_UP),
// 2.5 -> 2 , 1.6 -> 1
// -1.6 -> -1 , -2.5 -> -2
DOWN(BigDecimal.ROUND_DOWN),
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -1 , -2.5 -> -2
CEILING(BigDecimal.R