UI-TARS 体验


跨平台支持:UI-TARS 支持桌面、移动和网页环境,提供标准化的行动定义,兼容多种平台操作。多模态感知:能够处理文本、图像等多种输入形式,实时感知和理解动态界面内容。自动化任务执行:通过自然语言指令,自动化完成打开应用、搜索信息、填写表单等复杂任务。

UI-TARS 是什么

在这里插入图片描述

UI-TARS 是字节跳动推出的新一代原生图形用户界面(GUI)代理模型,旨在通过自然语言实现对桌面、移动设备和网页界面的自动化交互。它具备强大的感知、推理、行动和记忆能力,能够实时理解动态界面,并通过多模态输入(如文本、图像)执行复杂的任务。

UI-TARS 的核心优势在于跨平台的标准化行动定义,支持桌面、移动和网页等多种环境。结合了快速直观反应和复杂任务规划的能力,支持多步推理、反思和错误纠正。此外,它还具备短期和长期记忆功能,能够更好地适应动态任务需求。

UI-TARS 的主要功能

  • 多模态感知:UI-TARS 能处理文本、图像等多种输入形式,实时感知和理解动态界面内容,支持跨平台(桌面、移动、网页)的交互。
  • 自然语言交互:用户可以通过自然语言指令与 UI-TARS 对话,完成任务规划、操作执行等复杂任务。支持多步推理和错误纠正,能像人类一样处理复杂的交互场景。
  • 跨平台操作:支持桌面、移动和网页环境,提供标准化的行动定义,同时兼容平台特定的操作(如快捷键、手势等)。
  • 视觉识别与交互:UI-TARS 能通过截图和视觉识别功能,精准定位界面元素,并执行鼠标点击、键盘输入等操作,适用于复杂的视觉任务。
  • 记忆与上下文管理:具备短期和长期记忆能力,能够捕捉任务上下文信息,保留历史交互记录,从而更好地支持连续任务和复杂场景。
  • 自动化任务执行:可以自动化完成一系列任务,如打开应用、搜索信息、填写表单等,提高用户的工作效率。
  • 灵活部署:支持云端部署(如 Hugging Face 推理端点)和本地部署(如通过 vLLM 或 Ollama),满足不同用户的需求。
  • 扩展性:UI-TARS 提供了丰富的 API 和开发工具,方便开发者进行二次开发和集成。

UI-TARS 的技术原理

  • 增强感知能力:UI-TARS 使用大规模的 GUI 截图数据集进行训练,能对界面元素进行上下文感知和精准描述。通过视觉编码器实时抽取视觉特征,实现对界面的多模态理解。
  • 统一行动建模:UI-TARS 将跨平台操作标准化,定义了一个统一的行动空间,支持桌面、移动端和 Web 平台的交互。通过大规模行动轨迹数据训练,模型能够实现精准的界面元素定位和交互。
  • 系统化推理能力:UI-TARS 引入了系统化推理机制,支持多步任务分解、反思思维和里程碑识别等推理模式。能在复杂任务中进行高层次规划和决策。
  • 迭代训练与在线反思:解决数据瓶颈问题,UI-TARS 通过自动收集、筛选和反思新的交互轨迹进行迭代训练。在虚拟机上运行,能从错误中学习并适应未预见的情况,减少人工干预。

使用体验

必要的配置 在开始之前,您需要设置一些必要的配置。
启用 MacOS 中 Agent TARS 的辅助功能权限:
系统设置 -> 隐私和安全 -> 无障碍访问

在这里插入图片描述
您可以点击左下角的按钮打开配置页面:

image
然后您可以设置模型配置和搜索配置。
对于模型配置,您可以设置模型提供者和 API 密钥:

在这里插入图片描述

对于 Azure OpenAI,您可以设置更多参数,包括 apiVersion、deploymentName 和 endpoint。

搜索配置中,您可以设置搜索提供者和 API 密钥:

在这里插入图片描述

开始您的第一次旅程 现在,你可以开始你的第一次 Agent TARS 之旅了!
您可以在输入框中输入您的问题,然后按 Enter 键发送问题。这里有一个示例:

在这里插入图片描述

它正在工作!
我们也支持人机交互,这意味着您可以通过输入框在工作过程中与代理进行交互。如果您想改变当前代理的工作方向,您可以在顶部位置的特殊输入框中输入您的想法,然后按 Enter 键发送您的想法。

如何运行 UI-TARS

云端部署

推荐使用 HuggingFace Inference Endpoints 进行快速部署。我们提供了两种文档供用户参考:

本地部署 [vLLM]

推荐使用 vLLM 进行快速部署和推理。你需要使用 vllm>=0.6.1

pip install -U transformers
VLLM_VERSION=0.6.6
CUDA_VERSION=cu124
pip install vllm==${VLLM_VERSION} --extra-index-url https://download.pytorch.org/whl/${CUDA_VERSION}

下载模型
我们在 Hugging Face 上提供了三种模型大小:2B、7B 和 72B。为了获得最佳性能,推荐使用 7B-DPO 或 72B-DPO 模型(取决于你的 GPU 配置):

python -m vllm.entrypoints.openai.api_server --served-model-name ui-tars --model <path to your model>

然后你可以使用以下代码与模型进行交互:

import base64
from openai import OpenAI

instruction = "search for today's weather"
screenshot_path = "screenshot.png"
client = OpenAI(
    base_url="http://127.0.0.1:8000/v1",
    api_key="empty",
)

prompt = r"""You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space

click(start_box='<|box_start|>(x1,y1)<|box_end|>')
left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
hotkey(key='')
type(content='') #If you want to submit your input, use \"\
\" at the end of `content`.
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished()
call_user() # Submit the task and call the user when the task is unsolvable, or when you need the user's help.

## Note
- Use Chinese in `Thought` part.
- Summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""

with open(screenshot_path, "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
response = client.chat.completions.create(
    model="ui-tars",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": prompt + instruction},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}},
            ],
        },
    ],
    frequency_penalty=1,
    max_tokens=128,
)
print(response.choices[0].message.content)

资源

总结

虽然有些无良自媒体吹嘘它能比肩manus, 而事实上没有windows版本, 可用性大大降低

### 部署 UI-TARS-7B-DPO 模型的方法 部署 UI-TARS-7B-DPO 模型通常涉及几个关键步骤,包括环境准备、模型加载以及服务启动。以下是详细的说明: #### 1. 环境准备 在开始之前,确保安装了必要的依赖项和库。推荐使用 Python 和 PyTorch 来处理深度学习模型。 ```bash pip install torch transformers accelerate ``` 如果计划在 GPU 上运行该模型,则需确认已正确安装 CUDA 工具包并验证其兼容性[^2]。 #### 2. 下载预训练模型 UI-TARS-7B-DPO 是基于 Hugging Face 的 Transformers 库发布的模型之一。可以通过以下命令下载模型权重文件: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "huggingface/ui-tars-7b-dpo" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` 上述代码片段会自动从 Hugging Face Model Hub 中拉取 `ui-tars-7b-dpo` 模型及其对应的分词器[^3]。 #### 3. 加载模型到内存 对于较大的模型(如 7B 参数量),可能需要优化资源分配策略以减少显存占用。可以利用混合精度加速技术来提升效率: ```python import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # 使用 FP16 半精度模式降低显存消耗 if device.type == "cuda": model.half() ``` 此部分通过检测设备类型动态调整计算逻辑,并启用半精度浮点数支持以便更高效地管理硬件资源[^4]。 #### 4. 构建推理接口 为了让其他应用程序能够调用该模型,可创建 RESTful API 或 gRPC 接口作为对外暴露的服务端点。下面是一个简单的 FastAPI 实现案例: ```python from fastapi import FastAPI from pydantic import BaseModel from typing import List app = FastAPI() class InputData(BaseModel): prompt: str max_length: int = 50 @app.post("/generate/") def generate_text(input_data: InputData): inputs = tokenizer.encode( input_data.prompt, return_tensors="pt", truncation=True, padding=True ).to(device) outputs = model.generate(inputs, max_length=input_data.max_length) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": result} ``` 这段脚本定义了一个 POST 请求路径 `/generate/` ,允许客户端发送输入提示串及最大生成长度参数给服务器完成文本生成功能[^5]。 #### 5. 启动服务 最后一步就是将整个项目打包成 Docker 容器或者直接本地运行 Flask/FastAPI 应用来监听 HTTP 连接请求: ```bash uvicorn main:app --host 0.0.0.0 --port 8000 ``` 至此,已完成 UI-TARS-7B-DPO 模型的基本部署流程。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赤胜骄阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值