1 矩阵的由来
解方程式
3x=7(1)
3x = 7 \tag{1}
3x=7(1)
只要在等号两边同乘以3−13^{-1}3−1,便有
3−1⋅3x=3−1⋅7⇒x=73
3^{-1} \cdot 3x = 3^{-1} \cdot 7 \Rightarrow x = \frac{7}{3}
3−1⋅3x=3−1⋅7⇒x=37
解联立方程式
{2x+3y=5x−2y=3(2)
\begin{cases}2x + 3y = 5 \\ x - 2y = 3 \end{cases} \tag{2}
{2x+3y=5x−2y=3(2)
时,经常使用消去法,先试图求解其中一个未知数,再代入求解另一个未知数。然而当未知数较多时,例如
{2x+5y+3z−4w=5−x+y+11z+7w=84x−7y+6z+2w=−33x−2y−4z−5w=1
\begin{cases}2x + 5y + 3z - 4w = 5 \\ -x + y + 11z + 7w = 8 \\ 4x - 7y + 6z + 2w = -3 \\ 3x - 2y - 4z - 5w = 1 \end{cases}
⎩⎨⎧2x+5y+3z−4w=5−x+y+11z+7w=84x−7y+6z+2w=−33x−2y−4z−5w=1
就变得相当麻烦。于是后来就有人想,能不能把这个联立方程组写得像式子(1)(1)(1) 一样呢?以联立方程式(2)(2)(2) 为例,我们将它看成
AX=C(3)
AX = C \tag{3}
AX=C(3)
其中AAA 是将系数全抓出来,为A=[231−2]A = \begin{bmatrix}2 & 3 \\ 1 & -2 \end{bmatrix}A=[213−2],XXX 是将变量抓出来,为X=[xy]X = \begin{bmatrix}x \\ y \end{bmatrix}X=[xy],而CCC 是常数的部份,为C=[53]C = \begin{bmatrix}5 \\ 3 \end{bmatrix}C=[53]。所以式子(3)(3)(3) 即为
[231−2][xy]=[53](4)
\begin{bmatrix}2 & 3 \\ 1 & -2 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix} = \begin{bmatrix}5 \\ 3 \end{bmatrix} \tag{4}
[213−2][xy]=[53](4)
看到这个,便可明白为何矩阵乘法是列与行相乘,因为这样才会变成(2)(2)(2) 的形式。现仿照式子(1)(1)(1) 的解法,在式子(3)(3)(3) 的等号两边乘上A−1A^{-1}A−1,就会得到
A−1AX=A−1C⇒X=A−1C
A^{-1}AX = A^{-1}C \Rightarrow X = A^{-1}C
A−1AX=A−1C⇒X=A−1C
如此便达到以简御繁的效果,将原来较复杂的联立方程表示为看来较简洁的矩阵方程。
不过在上述的简介当中,为了快速让你明白矩阵的由来,省略了许多重要的细节讨论。以下稍放慢脚步,仔细做实数与矩阵的类比。
在实数的方程式
ax=b(5)
ax = b \tag{5}
ax=b(5)
中,可不可以说等号两边同乘以a−1a^{-1}a−1,得到x=a−1⋅bx = a^{-1} \cdot bx=a−1⋅b 呢?可以的,先决条件是a−1a^{-1}a−1 存在,也就是aaa 不为000。
在矩阵方程
AX=C(6)
AX = C \tag{6}
AX=C(6)
中,可不可以说等号两边同乘以A−1A^{-1}A−1,得到x=A−1⋅Cx = A^{-1} \cdot Cx=A−1⋅C 呢?可以的,先决条件是A−1A^{-1}A−1 存在,然而这是什么意思呢?
在实数的情况中,a−1a^{-1}a−1 究竟是什么东西?我们这样说:a−1a^{-1}a−1 是使得a⋅a−1=1a \cdot a^{-1} = 1a⋅a−1=1 成立的数,我们称a−1a^{-1}a−1 为aaa 的乘法反元素。因为000 乘以任何数都不会是111,所以a=0a = 0a=0 时不存在a−1a^{-1}a−1。在矩阵的情况,A−1A^{-1}A−1 是什么东西?我们这么说:A−1A^{-1}A−1 是使得A⋅A−1=IA \cdot A^{-1} = IA⋅A−1=I 成立的矩阵。我们称A−1A^{-1}A−1 为AAA 的乘法反矩阵,简称AAA 的逆矩阵。
而III 又是什么东西?它的角色就像实数中的111。任何实数kkk 乘以111,结果都还是kkk,我们称111 为乘法单位元素;任何矩阵BBB 乘以III,结果都还是BBB,我们称III 为单位矩阵。至于它实际写起来长什么样子呢?二阶的单位矩阵为
I2=[1001]
I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
I2=[1001]
三阶的单位矩阵则为
I3=[100010001]
I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
I3=100010001
更高阶的以此类推。
所以,如果我们真的在式子(6)(6)(6) 两边同乘以A−1A^{-1}A−1。等一下,我这样讲其实很有问题,因为矩阵乘法并不具交换律(AB=BAAB=BAAB=BA 并不一定成立)。我应该说:在式子(6)(6)(6) 两边同时左乘A−1A^{-1}A−1,得到
A−1(AX)=A−1C⇒(A−1A)X=A−1C矩阵有结合律⇒IX=A−1C⇒X=A−1C
\begin{split}
A^{-1}(AX) &= A^{-1}C \\ \Rightarrow (A^{-1}A)X &= A^{-1}C \quad \text{矩阵有结合律} \\ \Rightarrow IX &= A^{-1}C \\ \Rightarrow X &= A^{-1}C
\end{split}
A−1(AX)⇒(A−1A)X⇒IX⇒X=A−1C=A−1C矩阵有结合律=A−1C=A−1C
所以,只要A−1A^{-1}A−1 存在,就必能解出X=[xy]X = \begin{bmatrix} x \\ y \end{bmatrix}X=[xy]。因为是解出确定的值,所以是唯一解,不是无限多组解。
那么,AAA 的逆矩阵何时存在呢?我们可以由AAA 行列式det(A)\det(A)det(A) 来判断。
性质 逆矩阵存在的条件
若det(A)≠0\det(A) \neq 0det(A)=0 则A−1A^{-1}A−1 存在;若det(A)=0\det(A) = 0det(A)=0 则A−1A^{-1}A−1 不存在。
这理由很简单,由克拉默法则,我们知道联立方程式的系数来做行列式,行列式值不为000 时有唯一解,而这个行列式即是我们现在讨论的det(A)\det(A)det(A)。
另一个角度来看,行列式有个性质是
det(AB)=det(A)det(B)
\det(AB) = \det(A)\det(B)
det(AB)=det(A)det(B)
矩阵相乘后取行列式等于各自取行列式后再相乘。所以
det(I)=1=det(A⋅A−1)=det(A)det(A−1)
\det(I) = 1 = \det(A \cdot A^{-1}) = \det(A)\det(A^{-1})
det(I)=1=det(A⋅A−1)=det(A)det(A−1)
这就知道若A−1A^{-1}A−1 存在,则det(A)\det(A)det(A) 必不为000;反过来说,若det(A)=0\det(A) = 0det(A)=0,则A−1A^{-1}A−1 必不存在。而且我们还顺便得知了
det(A−1)=1det(A)
\det(A^{-1}) = \frac{1}{\det(A)}
det(A−1)=det(A)1
矩阵的行列式与其逆矩阵的行列式互为倒数。
例题 1
设x,cx, cx,c 为实数,方阵A=[32−2x]A = \begin{bmatrix} 3 & 2 \\ -2 & x \end{bmatrix}A=[3−22x]、B=[3−22x]B = \begin{bmatrix} 3 & -2 \\ 2 & x \end{bmatrix}B=[32−2x] 。已知AAA 的逆方阵恰好是BBB 的ccc 倍(其中c≠0c \neq 0c=0),则数对(x,c)=‾(x, c) = \underline{\quad \quad}(x,c)= 。
解
[1001]=AA−1=A(cB)=c[32−2x][3−22x]=c[13∗−6+2x∗]⇒{13c=1c(−6+2x)=0⇒(x,c)=(3,113)
\begin{split}
&\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = AA^{-1} = A(cB) = c\begin{bmatrix} 3 & 2 \\ -2 & x \end{bmatrix}\begin{bmatrix} 3 & -2 \\ 2 & x \end{bmatrix} = c\begin{bmatrix} 13 & * \\ -6 + 2x & * \end{bmatrix}
\\\Rightarrow &\begin{cases} 13c = 1 \\ c(-6 + 2x) = 0 \end{cases} \Rightarrow (x, c) = \left( 3, \frac{1}{13} \right)
\end{split}
⇒[1001]=AA−1=A(cB)=c[3−22x][32−2x]=c[13−6+2x∗∗]{13c=1c(−6+2x)=0⇒(x,c)=(3,131)
例题 2
已知
{5x−8y+z=14x−7y+z=06x−10y+z=0,{5x−8y+z=04x−7y+z=16x−10y+z=0,{5x−8y+z=04x−7y+z=06x−10y+z=1
\begin{cases} 5x - 8y + z = 1 \\ 4x - 7y + z = 0 \\ 6x - 10y + z = 0 \end{cases}, \begin{cases} 5x - 8y + z = 0 \\ 4x - 7y + z = 1 \\ 6x - 10y + z = 0 \end{cases}, \begin{cases} 5x - 8y + z = 0 \\ 4x - 7y + z = 0 \\ 6x - 10y + z = 1 \end{cases}
⎩⎨⎧5x−8y+z=14x−7y+z=06x−10y+z=0,⎩⎨⎧5x−8y+z=04x−7y+z=16x−10y+z=0,⎩⎨⎧5x−8y+z=04x−7y+z=06x−10y+z=1
的解分别为(3,2,2),(−2,−1,2),(−1,−1,−3)(3, 2, 2), (-2, -1, 2), (-1, -1, -3)(3,2,2),(−2,−1,2),(−1,−1,−3) 。若A=[5−814−716−101]A = \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}A=546−8−7−10111 且AB=[100010001]AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}AB=100010001 ,则矩阵B=‾B = \underline{\quad \quad}B= 。
解
所求BBB 其实就是A−1A^{-1}A−1 ,而由题意可列出
[5−814−716−101][322]=[100],[5−814−716−101][−2−12]=[010],[5−814−716−101][−1−13]=[001]
\begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
546−8−7−10111322=100,546−8−7−10111−2−12=010,546−8−7−10111−1−13=001
可合并写成
[5−814−716−101][3−2−12−1−1223]=[100010001]
\begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} 3 & -2 & -1 \\ 2 & -1 & -1 \\ 2 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
546−8−7−10111322−2−12−1−13=100010001
显然
B=A−1=[3−2−12−1−1223]
B = A^{-1} = \begin{bmatrix} 3 & -2 & -1 \\ 2 & -1 & -1 \\ 2 & 2 & 3 \end{bmatrix}
B=A−1=322−2−12−1−13
例题 3
设PPP、QQQ、RRR 为二阶方阵,已知PQ=[20120],PR=[13412]PQ = \begin{bmatrix} 2 & 0 \\ 12 & 0 \end{bmatrix}, PR = \begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix}PQ=[21200],PR=[14312] 且Q+R=[1033]Q + R = \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}Q+R=[1303] ,则P=‾P = \underline{\quad \quad}P= 。
解
P[1033]=P(Q+R)=PQ+PR=[20120]+[13412]=[331612]⇒P=[331612][1033]−1=13[331612][30−31]=[0144]
\begin{split}
&P\begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix} = P(Q + R) = PQ + PR = \begin{bmatrix} 2 & 0 \\ 12 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix}
\\ \Rightarrow &P = \begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}^{-1} = \frac{1}{3}\begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix}\begin{bmatrix} 3 & 0 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 4 \end{bmatrix}
\end{split}
⇒P[1303]=P(Q+R)=PQ+PR=[21200]+[14312]=[316312]P=[316312][1303]−1=31[316312][3−301]=[0414]
2 线性变换
以下再介绍矩阵所对应的线性变换,但线性变换本身并不是目的,只是帮助更理解矩阵的手段。所以不论你自认的数学基础如何,均可以阅读本文。
定义 线性变换的定义
一个变换T(x):x→yT(x): x \to yT(x):x→y若满足
- 对于任意a,ba, ba,b皆有T(a+b)=T(a)+T(b)T(a + b) = T(a) + T(b)T(a+b)=T(a)+T(b)
- 对于任意aaa及常数ccc皆有T(c⋅a)=c⋅T(a)T(c \cdot a) = c \cdot T(a)T(c⋅a)=c⋅T(a)
则T(x)T(x)T(x)为一线性变换。
简单地说,先相加再变换,必等于先各自变换再相加;先常数倍再变换,必等于先变换再常数倍。
例如旋转就是一种线性变换:先旋转30∘30^\circ30∘,再旋转50∘50^\circ50∘,等于一口气旋转80∘80^\circ80∘;旋转30∘30^\circ30∘三次,等于一口气旋转90∘90^\circ90∘。函数y=f(x)=mxy = f(x) = mxy=f(x)=mx就是一种线性变换:
f(a+b)=m(a+b)=ma+mb=f(a)+f(b)f(c⋅a)=m(ca)=cma=c⋅f(a)
\begin{split}
&f(a + b) = m(a + b) = ma + mb = f(a) + f(b)
\\& f(c \cdot a) = m(ca) = cma = c \cdot f(a)
\end{split}
f(a+b)=m(a+b)=ma+mb=f(a)+f(b)f(c⋅a)=m(ca)=cma=c⋅f(a)
函数y=sin(x)y = \sin(x)y=sin(x)不是线性变换,因为sin(30∘+50∘)\sin(30^\circ + 50^\circ)sin(30∘+50∘)不会等于sin(30∘)+sin(50∘)\sin(30^\circ) + \sin(50^\circ)sin(30∘)+sin(50∘)。
矩阵与线性变换的关联是:任何线性变换,都必可找到一个相应的矩阵,来表示这个线性变换。反过来说也对,每一个矩阵都代表了某一种线性变换。
在通常讨论的矩阵主题中,介绍了几种线性变换:推移、伸缩、旋转、镜射,它们都满足上述定义。
另外,矩阵的列运算其实也满足线性变换的定义!所以我们可以找到矩阵来代表列运算。例如将第一列乘以 2 再加到第二列
[1234]→[1258]
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \to \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix}
[1324]→[1528]
可表示成
[1021][1234]=[1258]
\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix}
[1201][1324]=[1528]
所以我们可以这么说,[1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}[1201]是一种列运算矩阵,它是将第一列的两倍加到第二列。
而认识列运算矩阵有什么用呢?我们可以用来理解一个求解反矩阵很好用的办法!这个解法无论是几阶的矩阵都适用,以下为简便用二阶方阵示意:
[34102301]→[111−12301]→[111−101−23]→[103−401−23]⇒[3423]−1=[3−4−23]
\begin{align*} &\left[\begin{array}{cc|cc} 3 & 4 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{array}\right] \to \left[\begin{array}{cc|cc} 1 & 1 & 1 & -1 \\ 2 & 3 & 0 & 1 \end{array}\right] \to \left[\begin{array}{cc|cc} 1 & 1 & 1 & -1 \\ 0 & 1 & -2 & 3 \end{array}\right]\\ &\to \left[\begin{array}{cc|cc} 1 & 0 & 3 & -4 \\ 0 & 1 & -2 & 3 \end{array}\right] \Rightarrow \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \end{align*}
[32431001]→[121310−11]→[10111−2−13]→[10013−2−43]⇒[3243]−1=[3−2−43]
这个过程的意思是:为了求A=[3423]A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}A=[3243]的逆矩阵,我们先将AAA与单位矩阵III写一起,写成[ A∣I ]\left[\,A\mid I\,\right][A∣I]。接着作列运算,试图将左边的AAA列运算成III,而右边的III同时做一样的列运算,等左边顺利变成III,看看此时的[ I∣B ]\left[\,I\mid B\,\right][I∣B],右边那个BBB就是我们要的A−1A^{-1}A−1了!
为什么会这样呢?刚刚才介绍,列运算可以想成被一个列运算矩阵乘上去,所以一开始的AAA,列运算一次后,可以看成E1AE_1AE1A,再列运算一次,可以看成E2E1AE_2E_1AE2E1A,等到列运算成III以后,可以看成I=En⋯E2E1AI = E_n\cdots E_2E_1AI=En⋯E2E1A,而原本在右边的III,因为在过程中都一起做相同的列运算,所以它变成En⋯E2E1IE_n\cdots E_2E_1IEn⋯E2E1I,也就是说B=En⋯E2E1B = E_n\cdots E_2E_1B=En⋯E2E1。可是上面已经讨论出I=En⋯E2E1AI = E_n\cdots E_2E_1AI=En⋯E2E1A,现在又说B=En⋯E2E1B = E_n\cdots E_2E_1B=En⋯E2E1,所以代入便得I=BAI = BAI=BA,这样便看出B=A−1B = A^{-1}B=A−1!
写了一大堆EEE也许你看得眼花缭乱,那我讲得更简洁些。线性变换都可以有矩阵来表示,当左边的AAA被我们变成III,我们可以想成它被乘上一个矩阵。当然这个矩阵就是A−1A^{-1}A−1,才会乘完变III嘛。而因为右边的III也经过一样的操作,所以右边的III也乘了一样的矩阵:A−1⋅IA^{-1} \cdot IA−1⋅I,所以最后的右边那矩阵即是A−1A^{-1}A−1。
至此,可下此结论:想得知某个线性变换所对应的矩阵,我们就把这个变换作用到III上面,这样就出来了。
刚刚说[1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}[1201]是一种列运算矩阵为例。我想知道将第一列的两倍加到第二列,这个动作对应的矩阵,把I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}I=[1001]拿来做一次「将第一列两倍加到第二列」的动作,这样就得到[1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}[1201]了。
再以伸缩矩阵为例,平面上一点P(x,y)P(x, y)P(x,y)如果我们想做xxx伸缩 3 倍、yyy伸缩 -2 倍,变成P′(3x,−2y)P'(3x, -2y)P′(3x,−2y)这样的伸缩矩阵要怎么写呢?这个动作是
[xy]→[3x−2y]
\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 3x \\ -2y \end{bmatrix}
[xy]→[3x−2y]
是一个「第一列变 3 倍、第二列变 -2 倍」的动作,我们将同样的动作作用在I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}I=[1001]上面,就得到[300−2]\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}[300−2] !
再以平移矩阵为例,平面上一点P(x,y)P(x, y)P(x,y)如果我们想做沿xxx平移yyy坐标的 3 倍,变成P′(x+3y,y)P'(x + 3y, y)P′(x+3y,y),这样的平移矩阵要怎么写呢?这个动作是
[xy]→[x+3yy]
\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} x + 3y \\ y \end{bmatrix}
[xy]→[x+3yy]
是一个「将第二列三倍加到第一列」的动作,我们将同样的动作作用在I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}I=[1001]上面,就得到[1301]\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}[1031] !
矩阵即线性变换、线性变换即矩阵
注意
(1) 单位矩阵III即恒等变换,任何P(x,y)P(x, y)P(x,y)被乘上III 后坐标不变。
[1001][xy]=[xy]
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}
[1001][xy]=[xy]
(2) 零矩阵OOO即零变换,任何P(x,y)P(x, y)P(x,y)被乘上OOO后必变成(0,0)(0, 0)(0,0)。
[0000][xy]=[00]
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
[0000][xy]=[00]
(3) A2A^2A2也是一种变换,它等于做AAA的变换做两次。例如AAA若是旋转30∘30^\circ30∘的矩阵,那么A2A^2A2就是旋转两次,即一口气旋转60∘60^\circ60∘;又例如AAA是xxx坐标伸缩 3 倍的伸缩矩阵,那么A2A^2A2就是xxx坐标伸缩 3 倍两次,即xxx 坐标一口气伸缩 9 倍的伸缩矩阵。
(4) ABABAB也是一种变换,它等于先被BBB变换,再被AAA变换。例如BBB是将x,yx, yx,y坐标互换的变换、AAA是投影到xxx轴的变换。则B=[0110]B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}B=[0110],A=[1000]A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}A=[1000],如果P(x,y)P(x, y)P(x,y)先被x,yx, yx,y坐标互换,得到P′(y,x)P'(y, x)P′(y,x),再投影到xxx轴上,得P′′(y,0)P''(y, 0)P′′(y,0)。而如果用矩阵乘法:
[1000][0110][xy]=[1000][yx]=[y0]
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix}
[1000][0110][xy]=[1000][yx]=[y0]
果然ABABAB等于先变换BBB再变换AAA 。
(5) 承上,如果我们改变变换的顺序,先将P(x,y)P(x, y)P(x,y)投影到xxx轴上,得到P1(x,0)P_1(x, 0)P1(x,0),再做x,yx, yx,y坐标互换,得到P2(0,x)P_2(0, x)P2(0,x) 。做完变换的结果与刚刚不相等,用矩阵乘法就是:
[0110][1000][xy]=[0110][x0]=[0x]
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix}
[0110][1000][xy]=[0110][x0]=[0x]
果然AB≠BAAB \neq BAAB=BA 。
(6) A−1A^{-1}A−1 也是一种变换,它是AAA 的逆变换。因为A−1A=IA^{-1}A = IA−1A=I,就是说先被AAA 变换,再被A−1A^{-1}A−1 变换,等同于被III 变换,即不变。例如AAA 是旋转30∘30^\circ30∘ 的旋转矩阵,那么A−1A^{-1}A−1 就是旋转−30∘-30^\circ−30∘ 的旋转矩阵;如果AAA 是xxx 方向伸缩 2 倍的伸缩矩阵,那么A−1A^{-1}A−1 就是xxx 方向伸缩12\frac{1}{2}21 倍的伸缩矩阵。
例题 4
选出下列中正确的项:
(A) 若A2=OA^2 = OA2=O,则A=OA = OA=O
(B) 若A2=IA^2 = IA2=I,则A=±IA = \pm IA=±I
© 若A2=AA^2 = AA2=A,则A=IA = IA=IorOOO
(D) 若AB=OAB = OAB=O,则A=OA = OA=OorB=OB = OB=O
(E) 若A2=B2A^2 = B^2A2=B2,则A=±BA = \pm BA=±B
解
(A) 错。如果变换两次等同于零变换,那么该变换本身必是零变换吗?不一定,如果这个变换是「先投影到xxx轴上,再x,yx, yx,y坐标互换」,那么如前所述,(x,y)(x, y)(x,y)会变成(0,x)(0, x)(0,x),继续再变换一次,就会变成(0,0)(0, 0)(0,0)。任意的(x,y)(x, y)(x,y)都会变成(0,0)(0, 0)(0,0),这就是零变换。以矩阵来说,就是取
A=[1000][0110]=[0100]
A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
A=[1000][0110]=[0010]
则
A2=[0100]2=[0000] A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A2=[0010]2=[0000]
(B) 错。如果变换两次等同于III,那么该变换本身必是III或−I-I−I吗?不一定,如果这个变换是「对xxx轴镜射」,那么(x,y)(x, y)(x,y)会变成 (对xxx轴镜射,等同于直接yyy坐标加负号),继续再变换一次,就会变回(x,y)(x, y)(x,y)。任意的(x,y)(x, y)(x,y)都会变成(x,y)(x, y)(x,y),这就是恒等变换。以矩阵来说,就是取
A=[100−1]
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
A=[100−1]
因为是yyy坐标加负号,所以对III的第二列加负号,这就成了对xxx 轴镜射的镜射矩阵。而变换两次,就是
A2=[100−1]2=[1001]
A^2=\begin{bmatrix}1&0\\0&-1\end{bmatrix}^2=\begin{bmatrix}1&0\\0&1\end{bmatrix}
A2=[100−1]2=[1001]
© 错。如果变换两次与变换一次相同,那么该变换本身必是恒等变换或零变换吗?
不一定,考虑「投影到xxx轴」这变换,投影两次与投影一次当然还是一样的。以矩阵来说,就是取
A=[1000]
A = \begin{bmatrix}1&0\\0&0\end{bmatrix}
A=[1000]
则
A2=[1000]2=[1000]
A^2=\begin{bmatrix}1&0\\0&0\end{bmatrix}^2=\begin{bmatrix}1&0\\0&0\end{bmatrix}
A2=[1000]2=[1000]
(D) 错。其实只要考虑A=BA = BA=B就变成选项 (A) 了。或者也可另举一例,一个是「投影到xxx轴」、一个是「投影到yyy轴」,无论哪个变换先做,(x,y)(x,y)(x,y)做了这两个变换后,必为(0,0)(0,0)(0,0)。以矩阵来说,就是取
A=[1000],B=[0001]
A=\begin{bmatrix}1&0\\0&0\end{bmatrix}, B=\begin{bmatrix}0&0\\0&1\end{bmatrix}
A=[1000],B=[0001]
则
AB=[1000][0001]=[0000]BA=[0001][1000]=[0000]
\begin{split}
&AB=\begin{bmatrix}1&0\\0&0\end{bmatrix}\begin{bmatrix}0&0\\0&1\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}
\\&BA=\begin{bmatrix}0&0\\0&1\end{bmatrix}\begin{bmatrix}1&0\\0&0\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}
\end{split}
AB=[1000][0001]=[0000]BA=[0001][1000]=[0000]
(E) 错。 其实只要考虑B=OB = OB=O 或B=IB = IB=I 就变成选项 (A) 或 (B) 了。