《机器学习数学基础》补充资料:矩阵的由来及线性变换

1 矩阵的由来

解方程式
3x=7(1) 3x = 7 \tag{1} 3x=7(1)
只要在等号两边同乘以3−13^{-1}31,便有
3−1⋅3x=3−1⋅7⇒x=73 3^{-1} \cdot 3x = 3^{-1} \cdot 7 \Rightarrow x = \frac{7}{3} 313x=317x=37
解联立方程式
{2x+3y=5x−2y=3(2) \begin{cases}2x + 3y = 5 \\ x - 2y = 3 \end{cases} \tag{2} {2x+3y=5x2y=3(2)
时,经常使用消去法,先试图求解其中一个未知数,再代入求解另一个未知数。然而当未知数较多时,例如
{2x+5y+3z−4w=5−x+y+11z+7w=84x−7y+6z+2w=−33x−2y−4z−5w=1 \begin{cases}2x + 5y + 3z - 4w = 5 \\ -x + y + 11z + 7w = 8 \\ 4x - 7y + 6z + 2w = -3 \\ 3x - 2y - 4z - 5w = 1 \end{cases} 2x+5y+3z4w=5x+y+11z+7w=84x7y+6z+2w=33x2y4z5w=1
就变得相当麻烦。于是后来就有人想,能不能把这个联立方程组写得像式子(1)(1)(1) 一样呢?以联立方程式(2)(2)(2) 为例,我们将它看成
AX=C(3) AX = C \tag{3} AX=C(3)
其中AAA 是将系数全抓出来,为A=[231−2]A = \begin{bmatrix}2 & 3 \\ 1 & -2 \end{bmatrix}A=[2132]XXX 是将变量抓出来,为X=[xy]X = \begin{bmatrix}x \\ y \end{bmatrix}X=[xy],而CCC 是常数的部份,为C=[53]C = \begin{bmatrix}5 \\ 3 \end{bmatrix}C=[53]。所以式子(3)(3)(3) 即为
[231−2][xy]=[53](4) \begin{bmatrix}2 & 3 \\ 1 & -2 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix} = \begin{bmatrix}5 \\ 3 \end{bmatrix} \tag{4} [2132][xy]=[53](4)
看到这个,便可明白为何矩阵乘法是列与行相乘,因为这样才会变成(2)(2)(2) 的形式。现仿照式子(1)(1)(1) 的解法,在式子(3)(3)(3) 的等号两边乘上A−1A^{-1}A1,就会得到
A−1AX=A−1C⇒X=A−1C A^{-1}AX = A^{-1}C \Rightarrow X = A^{-1}C A1AX=A1CX=A1C
如此便达到以简御繁的效果,将原来较复杂的联立方程表示为看来较简洁的矩阵方程。

不过在上述的简介当中,为了快速让你明白矩阵的由来,省略了许多重要的细节讨论。以下稍放慢脚步,仔细做实数与矩阵的类比。

在实数的方程式
ax=b(5) ax = b \tag{5} ax=b(5)
中,可不可以说等号两边同乘以a−1a^{-1}a1,得到x=a−1⋅bx = a^{-1} \cdot bx=a1b 呢?可以的,先决条件是a−1a^{-1}a1 存在,也就是aaa 不为000

在矩阵方程
AX=C(6) AX = C \tag{6} AX=C(6)
中,可不可以说等号两边同乘以A−1A^{-1}A1,得到x=A−1⋅Cx = A^{-1} \cdot Cx=A1C 呢?可以的,先决条件是A−1A^{-1}A1 存在,然而这是什么意思呢?

在实数的情况中,a−1a^{-1}a1 究竟是什么东西?我们这样说:a−1a^{-1}a1 是使得a⋅a−1=1a \cdot a^{-1} = 1aa1=1 成立的数,我们称a−1a^{-1}a1aaa 的乘法反元素。因为000 乘以任何数都不会是111,所以a=0a = 0a=0 时不存在a−1a^{-1}a1。在矩阵的情况,A−1A^{-1}A1 是什么东西?我们这么说:A−1A^{-1}A1 是使得A⋅A−1=IA \cdot A^{-1} = IAA1=I 成立的矩阵。我们称A−1A^{-1}A1AAA乘法反矩阵,简称AAA逆矩阵

III 又是什么东西?它的角色就像实数中的111。任何实数kkk 乘以111,结果都还是kkk,我们称111 为乘法单位元素;任何矩阵BBB 乘以III,结果都还是BBB,我们称III单位矩阵。至于它实际写起来长什么样子呢?二阶的单位矩阵为
I2=[1001] I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} I2=[1001]
三阶的单位矩阵则为
I3=[100010001] I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} I3=100010001
更高阶的以此类推。

所以,如果我们真的在式子(6)(6)(6) 两边同乘以A−1A^{-1}A1。等一下,我这样讲其实很有问题,因为矩阵乘法并不具交换律(AB=BAAB=BAAB=BA 并不一定成立)。我应该说:在式子(6)(6)(6) 两边同时左乘A−1A^{-1}A1​,得到
A−1(AX)=A−1C⇒(A−1A)X=A−1C矩阵有结合律⇒IX=A−1C⇒X=A−1C \begin{split} A^{-1}(AX) &= A^{-1}C \\ \Rightarrow (A^{-1}A)X &= A^{-1}C \quad \text{矩阵有结合律} \\ \Rightarrow IX &= A^{-1}C \\ \Rightarrow X &= A^{-1}C \end{split} A1(AX)(A1A)XIXX=A1C=A1C矩阵有结合律=A1C=A1C
所以,只要A−1A^{-1}A1 存在,就必能解出X=[xy]X = \begin{bmatrix} x \\ y \end{bmatrix}X=[xy]。因为是解出确定的值,所以是唯一解,不是无限多组解。

那么,AAA 的逆矩阵何时存在呢?我们可以由AAA 行列式det⁡(A)\det(A)det(A) 来判断。

性质 逆矩阵存在的条件

det⁡(A)≠0\det(A) \neq 0det(A)=0A−1A^{-1}A1 存在;若det⁡(A)=0\det(A) = 0det(A)=0A−1A^{-1}A1 不存在。

这理由很简单,由克拉默法则,我们知道联立方程式的系数来做行列式,行列式值不为000 时有唯一解,而这个行列式即是我们现在讨论的det⁡(A)\det(A)det(A)

另一个角度来看,行列式有个性质是
det⁡(AB)=det⁡(A)det⁡(B) \det(AB) = \det(A)\det(B) det(AB)=det(A)det(B)
矩阵相乘后取行列式等于各自取行列式后再相乘。所以
det⁡(I)=1=det⁡(A⋅A−1)=det⁡(A)det⁡(A−1) \det(I) = 1 = \det(A \cdot A^{-1}) = \det(A)\det(A^{-1}) det(I)=1=det(AA1)=det(A)det(A1)
这就知道若A−1A^{-1}A1 存在,则det⁡(A)\det(A)det(A) 必不为000;反过来说,若det⁡(A)=0\det(A) = 0det(A)=0,则A−1A^{-1}A1 必不存在。而且我们还顺便得知了
det⁡(A−1)=1det⁡(A) \det(A^{-1}) = \frac{1}{\det(A)} det(A1)=det(A)1
矩阵的行列式与其逆矩阵的行列式互为倒数。

例题 1

x,cx, cx,c 为实数,方阵A=[32−2x]A = \begin{bmatrix} 3 & 2 \\ -2 & x \end{bmatrix}A=[322x]B=[3−22x]B = \begin{bmatrix} 3 & -2 \\ 2 & x \end{bmatrix}B=[322x] 。已知AAA 的逆方阵恰好是BBBccc 倍(其中c≠0c \neq 0c=0),则数对(x,c)=‾(x, c) = \underline{\quad \quad}(x,c)=


[1001]=AA−1=A(cB)=c[32−2x][3−22x]=c[13∗−6+2x∗]⇒{13c=1c(−6+2x)=0⇒(x,c)=(3,113) \begin{split} &\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = AA^{-1} = A(cB) = c\begin{bmatrix} 3 & 2 \\ -2 & x \end{bmatrix}\begin{bmatrix} 3 & -2 \\ 2 & x \end{bmatrix} = c\begin{bmatrix} 13 & * \\ -6 + 2x & * \end{bmatrix} \\\Rightarrow &\begin{cases} 13c = 1 \\ c(-6 + 2x) = 0 \end{cases} \Rightarrow (x, c) = \left( 3, \frac{1}{13} \right) \end{split} [1001]=AA1=A(cB)=c[322x][322x]=c[136+2x]{13c=1c(6+2x)=0(x,c)=(3,131)
例题 2

已知
{5x−8y+z=14x−7y+z=06x−10y+z=0,{5x−8y+z=04x−7y+z=16x−10y+z=0,{5x−8y+z=04x−7y+z=06x−10y+z=1 \begin{cases} 5x - 8y + z = 1 \\ 4x - 7y + z = 0 \\ 6x - 10y + z = 0 \end{cases}, \begin{cases} 5x - 8y + z = 0 \\ 4x - 7y + z = 1 \\ 6x - 10y + z = 0 \end{cases}, \begin{cases} 5x - 8y + z = 0 \\ 4x - 7y + z = 0 \\ 6x - 10y + z = 1 \end{cases} 5x8y+z=14x7y+z=06x10y+z=0,5x8y+z=04x7y+z=16x10y+z=0,5x8y+z=04x7y+z=06x10y+z=1
的解分别为(3,2,2),(−2,−1,2),(−1,−1,−3)(3, 2, 2), (-2, -1, 2), (-1, -1, -3)(3,2,2),(2,1,2),(1,1,3) 。若A=[5−814−716−101]A = \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}A=5468710111AB=[100010001]AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}AB=100010001 ,则矩阵B=‾B = \underline{\quad \quad}B=

所求BBB 其实就是A−1A^{-1}A1 ,而由题意可列出
[5−814−716−101][322]=[100],[5−814−716−101][−2−12]=[010],[5−814−716−101][−1−13]=[001] \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} 5468710111322=100,5468710111212=010,5468710111113=001
可合并写成
[5−814−716−101][3−2−12−1−1223]=[100010001] \begin{bmatrix} 5 & -8 & 1 \\ 4 & -7 & 1 \\ 6 & -10 & 1 \end{bmatrix}\begin{bmatrix} 3 & -2 & -1 \\ 2 & -1 & -1 \\ 2 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} 5468710111322212113=100010001
显然
B=A−1=[3−2−12−1−1223] B = A^{-1} = \begin{bmatrix} 3 & -2 & -1 \\ 2 & -1 & -1 \\ 2 & 2 & 3 \end{bmatrix} B=A1=322212113
例题 3

PPPQQQRRR 为二阶方阵,已知PQ=[20120],PR=[13412]PQ = \begin{bmatrix} 2 & 0 \\ 12 & 0 \end{bmatrix}, PR = \begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix}PQ=[21200],PR=[14312]Q+R=[1033]Q + R = \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}Q+R=[1303] ,则P=‾P = \underline{\quad \quad}P=


P[1033]=P(Q+R)=PQ+PR=[20120]+[13412]=[331612]⇒P=[331612][1033]−1=13[331612][30−31]=[0144] \begin{split} &P\begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix} = P(Q + R) = PQ + PR = \begin{bmatrix} 2 & 0 \\ 12 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix} \\ \Rightarrow &P = \begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}^{-1} = \frac{1}{3}\begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix}\begin{bmatrix} 3 & 0 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 4 \end{bmatrix} \end{split} P[1303]=P(Q+R)=PQ+PR=[21200]+[14312]=[316312]P=[316312][1303]1=31[316312][3301]=[0414]

2 线性变换

以下再介绍矩阵所对应的线性变换,但线性变换本身并不是目的,只是帮助更理解矩阵的手段。所以不论你自认的数学基础如何,均可以阅读本文。

定义 线性变换的定义

一个变换T(x):x→yT(x): x \to yT(x):xy若满足

  1. 对于任意a,ba, ba,b皆有T(a+b)=T(a)+T(b)T(a + b) = T(a) + T(b)T(a+b)=T(a)+T(b)
  2. 对于任意aaa及常数ccc皆有T(c⋅a)=c⋅T(a)T(c \cdot a) = c \cdot T(a)T(ca)=cT(a)

T(x)T(x)T(x)为一线性变换。

简单地说,先相加再变换,必等于先各自变换再相加;先常数倍再变换,必等于先变换再常数倍。

例如旋转就是一种线性变换:先旋转30∘30^\circ30,再旋转50∘50^\circ50,等于一口气旋转80∘80^\circ80;旋转30∘30^\circ30三次,等于一口气旋转90∘90^\circ90。函数y=f(x)=mxy = f(x) = mxy=f(x)=mx就是一种线性变换:
f(a+b)=m(a+b)=ma+mb=f(a)+f(b)f(c⋅a)=m(ca)=cma=c⋅f(a) \begin{split} &f(a + b) = m(a + b) = ma + mb = f(a) + f(b) \\& f(c \cdot a) = m(ca) = cma = c \cdot f(a) \end{split} f(a+b)=m(a+b)=ma+mb=f(a)+f(b)f(ca)=m(ca)=cma=cf(a)
函数y=sin⁡(x)y = \sin(x)y=sin(x)不是线性变换,因为sin⁡(30∘+50∘)\sin(30^\circ + 50^\circ)sin(30+50)不会等于sin⁡(30∘)+sin⁡(50∘)\sin(30^\circ) + \sin(50^\circ)sin(30)+sin(50)

矩阵与线性变换的关联是:任何线性变换,都必可找到一个相应的矩阵,来表示这个线性变换。反过来说也对,每一个矩阵都代表了某一种线性变换。

在通常讨论的矩阵主题中,介绍了几种线性变换:推移、伸缩、旋转、镜射,它们都满足上述定义。

另外,矩阵的列运算其实也满足线性变换的定义!所以我们可以找到矩阵来代表列运算。例如将第一列乘以 2 再加到第二列

[1234]→[1258] \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \to \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} [1324][1528]
可表示成

[1021][1234]=[1258] \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} [1201][1324]=[1528]
所以我们可以这么说,[1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}[1201]是一种列运算矩阵,它是将第一列的两倍加到第二列。

而认识列运算矩阵有什么用呢?我们可以用来理解一个求解反矩阵很好用的办法!这个解法无论是几阶的矩阵都适用,以下为简便用二阶方阵示意:
[34102301]→[111−12301]→[111−101−23]→[103−401−23]⇒[3423]−1=[3−4−23] \begin{align*} &\left[\begin{array}{cc|cc} 3 & 4 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{array}\right] \to \left[\begin{array}{cc|cc} 1 & 1 & 1 & -1 \\ 2 & 3 & 0 & 1 \end{array}\right] \to \left[\begin{array}{cc|cc} 1 & 1 & 1 & -1 \\ 0 & 1 & -2 & 3 \end{array}\right]\\ &\to \left[\begin{array}{cc|cc} 1 & 0 & 3 & -4 \\ 0 & 1 & -2 & 3 \end{array}\right] \Rightarrow \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \end{align*} [32431001][12131011][10111213][10013243][3243]1=[3243]
这个过程的意思是:为了求A=[3423]A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}A=[3243]的逆矩阵,我们先将AAA与单位矩阵III写一起,写成[ A∣I ]\left[\,A\mid I\,\right][AI]。接着作列运算,试图将左边的AAA列运算成III,而右边的III同时做一样的列运算,等左边顺利变成III,看看此时的[ I∣B ]\left[\,I\mid B\,\right][IB],右边那个BBB就是我们要的A−1A^{-1}A1了!

为什么会这样呢?刚刚才介绍,列运算可以想成被一个列运算矩阵乘上去,所以一开始的AAA,列运算一次后,可以看成E1AE_1AE1A,再列运算一次,可以看成E2E1AE_2E_1AE2E1A,等到列运算成III以后,可以看成I=En⋯E2E1AI = E_n\cdots E_2E_1AI=EnE2E1A,而原本在右边的III,因为在过程中都一起做相同的列运算,所以它变成En⋯E2E1IE_n\cdots E_2E_1IEnE2E1I,也就是说B=En⋯E2E1B = E_n\cdots E_2E_1B=EnE2E1。可是上面已经讨论出I=En⋯E2E1AI = E_n\cdots E_2E_1AI=EnE2E1A,现在又说B=En⋯E2E1B = E_n\cdots E_2E_1B=EnE2E1,所以代入便得I=BAI = BAI=BA,这样便看出B=A−1B = A^{-1}B=A1

写了一大堆EEE也许你看得眼花缭乱,那我讲得更简洁些。线性变换都可以有矩阵来表示,当左边的AAA被我们变成III,我们可以想成它被乘上一个矩阵。当然这个矩阵就是A−1A^{-1}A1,才会乘完变III嘛。而因为右边的III也经过一样的操作,所以右边的III也乘了一样的矩阵:A−1⋅IA^{-1} \cdot IA1I,所以最后的右边那矩阵即是A−1A^{-1}A1

至此,可下此结论:想得知某个线性变换所对应的矩阵,我们就把这个变换作用到III上面,这样就出来了。

刚刚说[1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}[1201]是一种列运算矩阵为例。我想知道将第一列的两倍加到第二列,这个动作对应的矩阵,把I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}I=[1001]拿来做一次「将第一列两倍加到第二列」的动作,这样就得到[1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}[1201]了。

再以伸缩矩阵为例,平面上一点P(x,y)P(x, y)P(x,y)如果我们想做xxx伸缩 3 倍、yyy伸缩 -2 倍,变成P′(3x,−2y)P'(3x, -2y)P(3x,2y)这样的伸缩矩阵要怎么写呢?这个动作是
[xy]→[3x−2y] \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 3x \\ -2y \end{bmatrix} [xy][3x2y]
是一个「第一列变 3 倍、第二列变 -2 倍」的动作,我们将同样的动作作用在I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}I=[1001]上面,就得到[300−2]\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}[3002]​ !

在这里插入图片描述

再以平移矩阵为例,平面上一点P(x,y)P(x, y)P(x,y)如果我们想做沿xxx平移yyy坐标的 3 倍,变成P′(x+3y,y)P'(x + 3y, y)P(x+3y,y),这样的平移矩阵要怎么写呢?这个动作是
[xy]→[x+3yy] \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} x + 3y \\ y \end{bmatrix} [xy][x+3yy]
是一个「将第二列三倍加到第一列」的动作,我们将同样的动作作用在I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}I=[1001]上面,就得到[1301]\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}[1031]​ !

在这里插入图片描述

矩阵即线性变换、线性变换即矩阵

注意

(1) 单位矩阵III恒等变换,任何P(x,y)P(x, y)P(x,y)被乘上III​ 后坐标不变。
[1001][xy]=[xy] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} [1001][xy]=[xy]

(2) 零矩阵OOO零变换,任何P(x,y)P(x, y)P(x,y)被乘上OOO后必变成(0,0)(0, 0)(0,0)​。
[0000][xy]=[00] \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} [0000][xy]=[00]

(3) A2A^2A2也是一种变换,它等于做AAA的变换做两次。例如AAA若是旋转30∘30^\circ30的矩阵,那么A2A^2A2就是旋转两次,即一口气旋转60∘60^\circ60;又例如AAAxxx坐标伸缩 3 倍的伸缩矩阵,那么A2A^2A2就是xxx坐标伸缩 3 倍两次,即xxx​ 坐标一口气伸缩 9 倍的伸缩矩阵。

在这里插入图片描述

(4) ABABAB也是一种变换,它等于先被BBB变换,再被AAA变换。例如BBB是将x,yx, yx,y坐标互换的变换、AAA是投影到xxx轴的变换。则B=[0110]B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}B=[0110]A=[1000]A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}A=[1000],如果P(x,y)P(x, y)P(x,y)先被x,yx, yx,y坐标互换,得到P′(y,x)P'(y, x)P(y,x),再投影到xxx轴上,得P′′(y,0)P''(y, 0)P′′(y,0)。而如果用矩阵乘法:
[1000][0110][xy]=[1000][yx]=[y0] \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix} [1000][0110][xy]=[1000][yx]=[y0]
果然ABABAB等于先变换BBB再变换AAA​ 。

在这里插入图片描述

(5) 承上,如果我们改变变换的顺序,先将P(x,y)P(x, y)P(x,y)投影到xxx轴上,得到P1(x,0)P_1(x, 0)P1(x,0),再做x,yx, yx,y坐标互换,得到P2(0,x)P_2(0, x)P2(0,x)​ 。做完变换的结果与刚刚不相等,用矩阵乘法就是:
[0110][1000][xy]=[0110][x0]=[0x] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} [0110][1000][xy]=[0110][x0]=[0x]
果然AB≠BAAB \neq BAAB=BA​ 。

在这里插入图片描述

(6) A−1A^{-1}A1​ 也是一种变换,它是AAA​ 的逆变换。因为A−1A=IA^{-1}A = IA1A=I​,就是说先被AAA​ 变换,再被A−1A^{-1}A1​ 变换,等同于被III​ 变换,即不变。例如AAA​ 是旋转30∘30^\circ30​ 的旋转矩阵,那么A−1A^{-1}A1​ 就是旋转−30∘-30^\circ30​ 的旋转矩阵;如果AAA​ 是xxx​ 方向伸缩 2 倍的伸缩矩阵,那么A−1A^{-1}A1​ 就是xxx​ 方向伸缩12\frac{1}{2}21​ 倍的伸缩矩阵。

在这里插入图片描述

例题 4

选出下列中正确的项:

(A) 若A2=OA^2 = OA2=O,则A=OA = OA=O

(B) 若A2=IA^2 = IA2=I,则A=±IA = \pm IA=±I

© 若A2=AA^2 = AA2=A,则A=IA = IA=IorOOO

(D) 若AB=OAB = OAB=O,则A=OA = OA=OorB=OB = OB=O

(E) 若A2=B2A^2 = B^2A2=B2,则A=±BA = \pm BA=±B

(A) 错。如果变换两次等同于零变换,那么该变换本身必是零变换吗?不一定,如果这个变换是「先投影到xxx轴上,再x,yx, yx,y坐标互换」,那么如前所述,(x,y)(x, y)(x,y)会变成(0,x)(0, x)(0,x),继续再变换一次,就会变成(0,0)(0, 0)(0,0)。任意的(x,y)(x, y)(x,y)都会变成(0,0)(0, 0)(0,0),这就是零变换。以矩阵来说,就是取
A=[1000][0110]=[0100] A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} A=[1000][0110]=[0010]

A2=[0100]2=[0000] A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A2=[0010]2=[0000]

(B) 错。如果变换两次等同于III,那么该变换本身必是III−I-II吗?不一定,如果这个变换是「对xxx轴镜射」,那么(x,y)(x, y)(x,y)会变成 (对xxx轴镜射,等同于直接yyy坐标加负号),继续再变换一次,就会变回(x,y)(x, y)(x,y)。任意的(x,y)(x, y)(x,y)都会变成(x,y)(x, y)(x,y),这就是恒等变换。以矩阵来说,就是取
A=[100−1] A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} A=[1001]
因为是yyy坐标加负号,所以对III的第二列加负号,这就成了对xxx​ 轴镜射的镜射矩阵。而变换两次,就是
A2=[100−1]2=[1001] A^2=\begin{bmatrix}1&0\\0&-1\end{bmatrix}^2=\begin{bmatrix}1&0\\0&1\end{bmatrix} A2=[1001]2=[1001]
© 错。如果变换两次与变换一次相同,那么该变换本身必是恒等变换或零变换吗?

不一定,考虑「投影到xxx轴」这变换,投影两次与投影一次当然还是一样的。以矩阵来说,就是取
A=[1000] A = \begin{bmatrix}1&0\\0&0\end{bmatrix} A=[1000]

A2=[1000]2=[1000] A^2=\begin{bmatrix}1&0\\0&0\end{bmatrix}^2=\begin{bmatrix}1&0\\0&0\end{bmatrix} A2=[1000]2=[1000]
(D) 错。其实只要考虑A=BA = BA=B就变成选项 (A) 了。或者也可另举一例,一个是「投影到xxx轴」、一个是「投影到yyy轴」,无论哪个变换先做,(x,y)(x,y)(x,y)做了这两个变换后,必为(0,0)(0,0)(0,0)。以矩阵来说,就是取
A=[1000],B=[0001] A=\begin{bmatrix}1&0\\0&0\end{bmatrix}, B=\begin{bmatrix}0&0\\0&1\end{bmatrix} A=[1000],B=[0001]

AB=[1000][0001]=[0000]BA=[0001][1000]=[0000] \begin{split} &AB=\begin{bmatrix}1&0\\0&0\end{bmatrix}\begin{bmatrix}0&0\\0&1\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix} \\&BA=\begin{bmatrix}0&0\\0&1\end{bmatrix}\begin{bmatrix}1&0\\0&0\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix} \end{split} AB=[1000][0001]=[0000]BA=[0001][1000]=[0000]
(E) 错。 其实只要考虑B=OB = OB=OB=IB = IB=I 就变成选项 (A) 或 (B) 了。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CS创新实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值