交叉熵损失函数基本概念及公式

在这里插入图片描述

交叉熵损失函数(Cross-Entropy Loss)是在机器学习和深度学习中常用的一种损失函数,主要用于衡量模型输出与真实标签之间的差异,特别适用于分类任务,尤其是多类别分类问题。

1.二分类

交叉熵损失函数的数学公式可以有多种表示形式。对于二分类问题,其公式可以表示为:

L = - [ y * log§ + (1 - y) * log(1 - p) ]

其中,y 表示真实标签,取值为 0 或 1;p 表示模型预测为正类的概率。当 y = 1 时,损失函数只关注 log§,即模型预测为正类的概率;当 y = 0 时,损失函数只关注 log(1 - p),即模型预测为负类的概率。

2. 对于多类别分类问题,其公式可以表示为:

L = - Σ (y_i * log(p_i))

其中,y_i 表示真实标签中第 i 类的取值,取值为 0 或 1;p_i 表示模型预测第 i 类的概率。Σ 表示对所有类别进行求和。

在这些公式中,log 表示自然对数,p 和 q 分别表示实际分布概率和模型预测分布概率,n 表示样本数量。交叉熵损失函数的值越小,表示模型预测与真实标签之间的差异越小,即模型的性能越好。

3. 公式深度挖掘

### 多酚类交叉熵损失函数 在机器学习和深度学习领域,交叉熵损失函数是一种广泛应用于分类问题中的损失函数。然而,“多酚类交叉熵损失函数”的表述并不常见于现有文献中[^1]。 通常提到的交叉熵损失函数定义为: 对于二分类问题,假设真实标签 \(y\) 取值为 {0, 1},预测概率分布由模型给出为 \(\hat{y}\),那么单个样本上的二元交叉熵损失可表达为: \[ L(y,\hat{y})=-\left[y\log (\hat{y})+(1-y)\log (1-\hat{y})\right]\] 对于多类别分类问题(假设有\(C\)个类别),则采用softmax激活后的输出向量与one-hot编码的真实标签之间的负对数似然作为损失衡量标准: \[L(Y,P)=-\sum_{c=1}^{C}Y_c\cdot\log(P_c)\] 其中,\(P=(p_1,p_2,...,p_C)^T\) 表示经过 softmax 函数转换得到的概率分布;\(Y=(y_1,y_2,...,y_C)^T\) 是对应位置上真实的 one-hot 编码标签向量[^2]。 此公式适用于大多数基于神经网络架构下的监督式学习任务,在训练过程中指导参数调整方向以最小化实际输出同目标之间差异程度。 ```python import torch.nn.functional as F def cross_entropy_loss(output, target): # Assuming output is logits and target is class indices. return F.cross_entropy(output, target) ``` 上述代码展示了如何使用 PyTorch 实现一个多类别交叉熵损失计算过程。 #### 关于“多酚类” 值得注意的是,“多酚类”一般是指植物化学物质的一类化合物,在食品科学、营养学等领域讨论较多,并不属于计算机科学术语范畴内。因此,如果确实存在名为“多酚类交叉熵损失函数”的概念,这可能是特定应用背景下的自定义命名方式或者是误解。建议确认具体应用场景后再做进一步探讨。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值