- 博客(622)
- 资源 (5)
- 问答 (1)
- 收藏
- 关注
原创 保存路径错误:line 2410, in save fp = builtins.open(filename, “w+b“) FileNotFoundError: [Errno 2] No su
Windows默认路径最大长度:260字符(即MAX_PATH)如果超了,需要特殊设置才能支持更长路径,比如开启(但是很麻烦,不推荐)所以,文件名+文件夹路径加起来,一般控制在240字符以内比较保险观察修改最后结果超长路径导致保存失败把文件名变短成功保存,没有任何报错。
2025-04-27 20:38:00
360
1
原创 深度学习实验中,需要设置验证集吗?
正式科研竞赛论文复现等场景,必须设置验证集,不能仅凭训练集选模型。如果数据特别小(比如医学图像、卫星图像小样本),可以考虑用K折交叉验证代替固定验证集。如果只有训练集和测试集(比如某些挑战赛),可以从训练集再划一部分出来当验证集。
2025-04-27 18:21:16
578
原创 python绘图:把图中所有的字体(包括坐标轴、图例、注释)统一设置为 Times New Roman(新罗马字体)
把图中所有的字体(包括坐标轴、图例、注释)统一设置为。
2025-04-22 09:47:24
892
原创 解释图标题的位置:plt.text(0.5, -0.05, “Leaky ReLU 激活函数“)
解释图标题的位置:plt.text(0.5, -0.05, "Leaky ReLU 激活函数")
2025-04-22 09:38:27
159
原创 python中,图正下方的标题的高低位置调整
表示“图宽度的中间位置,图高度的下方偏15%处”,是用于在子图正下方添加标题或注释的常用方式。如果觉得标题太低或太高,可以微调-0.15这个数字,比如-0.1或-0.2。
2025-04-22 09:34:26
265
原创 短时傅里叶变换(Short-Time Fourier Transform,简称 STFT)究竟在干什么?
短时傅里叶变换(Short-Time Fourier Transform,简称 STFT)是一种的方法,是对传统傅里叶变换的一种改进。
2025-04-16 15:17:30
834
原创 傅里叶变换在干什么?
这个声音中含有100Hz(鼓)、800Hz(小提琴)、3000Hz(口哨),每个成分强度是多少。我们平时看到的信号,比如声音、电压、震动信号,都是随。,这叫“时间域”表示。傅里叶变换就能帮我们把信号“拆解”成一堆不同频率的。它的反变换可以把频率信息再还原回时间域。“这个信号是由哪些频率的振动组成的”。
2025-04-16 15:14:31
637
原创 时域、频域、时频域的基本概念
时域信号频域信号时频域信号类型表示方式横轴纵轴常用分析方法时域信号波形时间幅值(振幅)原始信号或采样数据频域频谱图频率幅值(能量)傅里叶变换(FT, FFT)时频域频谱图随时间变化时间频率、强度STFT、小波变换如果你正在处理风电故障信号,时域只能看出异常是否存在频域可以分析异常的频率特征,而时频域能进一步告诉你:异常是在什么时候、以什么频率爆发的。
2025-04-16 14:59:25
539
原创 一维数据使用TSNE,报错py“, line 138, in <module> tsne_result_out = tsne2.fit_transform(logits_np)
logits_np(N, 1),而我却试图用 t-SNE 把它降成 2 维,这在内部 PCA 初始化阶段会失败。
2025-04-15 10:41:29
288
原创 参数 stratify=y 在训练集和测试集划分中的作用!!
是否加stratify说明❌ 不加数据随机打乱,可能某些类别偏斜甚至丢失✅ 加stratify=y保持标签分布一致,适合分类问题,强烈建议使用。
2025-04-15 08:56:38
213
原创 PCA(主成分分析)不是“筛掉”特征,而是“合并”、“压缩”特征。
特征选择是 “在原来的变量中挑出重要的”;PCA是 “把所有变量揉合在一起,提取出几个最能代表数据的信息方向”。
2025-04-14 15:05:53
617
原创 大白话解释:PCA 降维(主成分分析,Principal Component Analysis)
这些 10 个属性里,其实有几个是重复、冗余的。我们可以把它们合并成‘综合指标’,只用 2~3 个就能代表整个数据的大部分信息。就像你拍一张照片时,虽然把三维的世界压缩成二维图像,但我们依然能看清楚物体形状 —— PCA 就干了类似的事情!
2025-04-14 14:59:16
463
原创 通俗的理解:MIC相关系数(最大信息系数,Maximal Information Coefficient)
MIC 就像一个万能探测器,它不关心关系是不是直的,只要你俩之间有“规律”,它就能发现。
2025-04-14 14:11:48
394
原创 通俗地解释一下 Pearson 相关系数
它是一个用来衡量两个变量之间线性关系强弱的指标,你可以把它理解成是“变量之间是否一起涨、一起跌”的一种数学量。Pearson 相关系数就是在告诉我们:两个变量是不是一起涨跌,以及这种一起涨跌的关系有多强。
2025-04-14 14:02:58
397
原创 通俗易懂的方式理解:EMD(经验模态分解)与VMD(变分模态分解)的共同点和不同点
EMD 更像是“经验派、简单直接”;VMD 更像是“数学派、稳定精准”。EMD适合初步探索,VMD更适合对信号质量要求高、应用场景复杂的分析任务。
2025-04-14 11:21:16
755
原创 理解:变分模态分解(VMD, Variational Mode Decomposition)
VMD 就像一个“频率过滤器”,把一个混合信号按频率拆成几部分,让我们能分别分析它们的特点。振动分析(如机械故障检测)电力系统信号处理生物信号(心电、脑电)分解风电/风速/温度信号预处理。
2025-04-14 11:13:01
494
原创 通俗地解释一下 EMD(经验模态分解,Empirical Mode Decomposition)
EMD 就像把一碗“混在一起的面条”分成不同粗细的面条,方便你逐层分析每种波动。
2025-04-14 11:06:53
684
原创 大概解释一下:极值统计理论(Extreme Value Theory, EVT)
是一门专门研究**“极端事件”**的概率和统计理论,它的目标是对“最大值、最小值”这类罕见但关键事件的行为建模预测。
2025-04-13 21:32:39
1021
原创 解释:指数加权移动平均(EWMA)
特点描述权重指数衰减越旧的数据权重越小实时更新只依赖当前值和上一个 EWMA,适合在线计算响应迅速可控通过α\alphaα控制对突变的响应程度常用于过程监控比如在质量控制图(如 EWMA控制图)中监测变量是否偏离控制线。
2025-04-13 21:09:51
1525
原创 Relief法**是一种非常经典、有效的**特征选择算法
是一种非常经典、有效的,尤其适用于。它能在不依赖模型的前提下,根据样本间的距离和类别差异,判断每个特征对分类任务的“区分能力”。
2025-04-13 18:30:28
981
原创 什么是“偏态”与“厚尾”?
定义:数据分布在均值的一侧拉长或压缩,呈现不对称结构。正偏(右偏):右侧尾巴较长,如收入、寿命分布;负偏(左偏):左侧尾巴较长。
2025-04-13 16:20:25
458
原创 变点分组法是一种时序数据处理与分段分析的方法
变点分组法(Change Point Segmentation Method):是一种根据时间序列中统计特征(如均值、方差、分布形态等)发生显著变化的位置,将序列自动划分为若干段的方法。每一段内部的统计特征保持相对一致,段与段之间则存在显著差异。
2025-04-13 15:27:04
392
原创 完美解决:ModuleNotFoundError: No module named ‘minepy‘
遇到的错误表明你的环境中尚未安装minepy这个库。
2025-04-01 10:02:45
520
1
原创 解决:在运行 plt.show()`时,程序会等待你手动关闭图片窗口才能继续往下执行
plt.show()这其实是matplotlib的默认行为 —— 它会弹出一个交互式窗口让你“看完图再走”。
2025-03-30 16:10:16
835
原创 安装torchinfo库,同时解决ERROR: No matching distribution found for torchinfo
报错如下:我目前遇到的是两个问题: 其实在 PyPI 上是存在的,但有些镜像源(比如清华)可能没同步到它,或者我的环境有点旧。如果网络不佳,可以加上超时时间延长 & 忽略缓存:❗问题 2:我当前 pip 被设置了“代理”,但代理地址无效从这个报错看得出来:说明我的 pip 被配置成走代理,但系统找不到这个代理路径或服务。可以通过以下方法清除代理配置:然后再试一次:✅ 或者永久清除(看下是否设置了环境变量)可以检查下是否在 或 或 中写死了 proxy 设置,有就删掉。
2025-03-29 17:59:42
544
原创 输出网络结构,该用`torchsummary还是torchinfo呢?最终得出torchsummary.summary()用于结构化数据,torchinfo可以用于非结构化数据
torchinfo(它支持 list input)。的使用范围,它会直接报错。,推荐的方式是手动注册。,它接受的输入是标准。
2025-03-29 17:55:32
254
原创 解决超时问题:raise ReadTimeoutError(self._pool, None, “Read timed out.“) pip._vendor.urllib3.exceptions.
这是超时问题,是网络速度的问题,并不是我操作的问题。
2025-03-29 17:47:48
1088
原创 解决:ERROR: Could not find a version that satisfies the requirement torch-geometric
是因为我当前的 pip 正在使用,而清华镜像,它是。
2025-03-29 17:44:42
805
原创 解决ERROR: Could not find a version that satisfies the requirement scipy (from versions: none) ERROR:
gdnscipy。
2025-03-29 17:37:14
1127
原创 ERROR: THESE PACKAGES DO NOT MATCH THE HASHES FROM THE REQUIREMENTS FILE. If you have updated the pa
这个错误提示是:✅ pip 检测到:安装的的.whl文件。
2025-03-29 17:20:29
853
SpringerLink施普林格旗下期刊latex模板下载方法-我已经附上latex模版
2024-03-05
Pycharm配置运行参数设置,这参数怎么设置呢?
2021-07-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人