网络环境下的视频传输分析——抗丢包优化策略——FEC冗余算法

本文探讨了在网络环境不佳的情况下,视频传输面临的丢包问题。分析了TCP的拥塞控制导致的速度大幅下降,以及UDP的不可靠性。作者研究了UDT协议,发现其在丢包时表现并不理想。最终,文章介绍了WebRTC的QOS-FEC-NACK技术,这是一种应用于应用层的抗丢包策略,通过FEC(前向纠错)、NACK(选择性重传)和QOS(服务质量)确保视频传输的可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

所谓的弱网络环境就是网络不是很好,比如无线wifi,跨多层网络路由、或者网路负载过大等等情况。这样数据在传输种会发生丢失的情况。
再说,网络协议,传输层分udp和tcp.本人对tcp做了专门的分析。见下图。
在这里插入图片描述
看图,我只开了开了2%的丢包,导致发送速度从>500Mb/s下降到 <160Mb/s。速度下降比率达70-80%,发生这个现象的原因是TCP的拥塞处理,当发现网络丢包的时候,就启动拥塞控制机制,降低发送速度,达到tcp可靠性传输的目的。大于大数据和视频的传输,速度在传输成降低这么多,很难满足应用层的需求,如果是视频就会导致视频的卡顿。因为接收端收不到需要的视频帧,只有停下来花更多的时间等待。实时上笔者在实际开发视频传输的时候使用过tcp,在我无线网络的情况下,tcp确实特别容易卡顿。关于tcp拥塞控制,大家可以搜索查阅相关的资料,这个不做细说。
笔者用的丢包工具是clumsy0.2。

我们查明了tcp卡顿的原因后,决定放弃tcp,那只有udp了,但是udp又不可靠,会有丢包和乱序的问题,导致视频播放的花屏,这个花屏是因为关键帧或者参考帧丢失了,导致后界的视频无法正常的恢复,从而出现花屏。于是有查阅了相关的资料,找到了一个udt 协议。
关于udt协议,网上的说明如下:
基于UDP的数据传输协议(UDP-based Data Transfer Protocol,简称UDT)是一种互联网数据传输协议。UDT的主要目的是支持高速广

### HLS协议在突发传输场景下的实现与优化 #### 突发传输的背景 HLS(High-Level Synthesis)是一种高级综合技术,用于将高层次描述转化为硬件电路设计。然而,在实际应用场景中,特别是在网络环境下的媒体流传输领域,HLS可能被误解为HTTP Live Streaming协议[^1]。在此背景下,讨论的是后者——一种基于HTTP的自适应比特率流媒体传输协议。 当涉及到突发传输时,主要挑战在于如何应对网络波动以及高效利用带宽资源。传统的FLV方式虽然简单易用,但在面对复杂网络条件时表现不佳,容易引发卡顿现象[^2]。因此,针对突发传输需求,可以从以下几个方面探讨其实现方式和优化策略: --- #### 实现方式 1. **分片化处理** 将多媒体文件分割成多个小片段(通常是几秒长度),并通过HTTP请求逐个下载播放。这种方式可以有效降低单次传输失败的风险,并允许客户端快速切换至其他可用源。 2. **动态码率调整** 根据当前网络状况实时改变编码质量参数,从而平衡画质体验与流畅度之间的关系。例如,在检测到较高丢包率或者较大延时时自动下调分辨率或帧速率设置;反之则提升以改善视觉效果[^3]。 3. **优先级调度机制** 对于重要程度较高的数据包赋予更高权重级别以便优先发送出去,比如关键帧相对于普通预测宏块而言应该获得更快更可靠的传递路径支持。 4. **前向纠错(FEC) 技术引入** 在每个TS段后面附加冗余信息位数作为错误恢复手段之一, 当接收端发现丢失部分特定字节序列之后可以通过解析这些额外加入的信息重新构建原始内容而无需再次发起重传请求操作. --- #### 优化方案 - **改进缓存管理**: 增强本地存储空间利用率的同时减少不必要的重复加载动作发生频率. - **增强QoS保障措施**: 结合CDN节点分布情况合理规划路由走向并实施差异化服务质量等级划分标准 - **采用新型压缩算法**: 如HEVC(High Efficiency Video Coding), 它相比传统AVC(Advanced Video Codec)可节省约50%的数据量却保持相近甚至更好观看感受 以下是关于如何通过Python脚本模拟简单的FEC过程的一个例子: ```python import numpy as np def generate_fec(data_blocks, redundancy_ratio=0.2): num_redundant = int(len(data_blocks)*redundancy_ratio) fec_matrix = np.random.randint(2,size=(len(data_blocks)+num_redundant,len(data_blocks))) redundant_data = [] for i in range(num_redundant): temp_sum = sum([fec_matrix[i][j]*data_blocks[j] for j in range(len(data_blocks))]) % 256 redundant_data.append(temp_sum) return data_blocks + redundant_data , fec_matrix original_data = list(range(8)) protected_data,fec_mat = generate_fec(original_data,redundancy_ratio=.3) print("Original Data:", original_data) print("Protected Data with FEC:", protected_data) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值