07.OpenCV交互:Trackbar与键盘按键操作详解

OpenCV交互:Trackbar与键盘按键操作

引言

在计算机视觉开发中,实时交互是提升算法调试效率的重要手段。OpenCV提供了Trackbar和键盘事件处理两种核心交互方式,下面通过代码介绍基本使用方法

1 Trackbar基础操作

1.1 Trackbar创建

#include "stdio.h"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;

void onLightCallback(int pos,void * usrData)
{
	std::cout << pos << std::endl;
	// 强制类型转换
	Mat src = *(Mat*)(usrData);
	Mat dst;
	add(src, Scalar(pos, pos, pos), dst);
	imshow("亮度与对比度调节", dst);
}
void onContrastCallback(int pos, void* usrData)
{
	std::cout << pos << std::endl;
	pos = pos;
	Mat src = *(Mat*)(usrData);
	Mat dst;
	multiply(src, Scalar(pos, pos, pos), dst);
	imshow("亮度与对比度调节", dst);
}

int main()
{

	cv::Mat srcImage=cv::imread("E:/image/lena.png");
	int lightValue = 0;
	int contrastValue = 0;
	namedWindow("亮度与对比度调节",WINDOW_FREERATIO);
	createTrackbar("亮度:", "亮度与对比度调节",&lightValue,100, onLightCallback,&srcImage);
	createTrackbar("对比度:", "亮度与对比度调节", &contrastValue, 5, onContrastCallback, &srcImage);
	imshow("亮度与对比度调节", srcImage);
	cv::waitKey(0);
	destroyAllWindows();
	return 0;
}

1.2 关键参数说明

  • createTrackbar参数解析:
    • 名称:显示在滑动条左侧的标签
    • 窗口:必须预先创建的窗口名称
    • 绑定变量:存储当前滑块位置的整型变量指针
    • 最大值:滑动条取值范围[0, max_value]
    • 回调函数:值改变时自动触发
    • 参数:传递参数给回调函数
  • 回调函数:onContrastCallback和onLightCallback每次 Trackbar 的数值变化都会调用回调函数。

2 键盘事件处理

2.1 按键检测基础框架


{
	while (true) {

		int key = cv::waitKey(delay); // 30ms延迟

		// 常规按键检测(ASCII码)
		if (key == 's') { // 保存图像
			std::cout << "Image saved!" << std::endl;
		}
		// 特殊按键检测
		else if (key == 27 || key == 'q') { // ESC或Q退出
			break;
		}
	}
}

2.2 按键处理要点

  • waitKey()返回值为按键ASCII码
  • cv::waitKeyEx() 支持扩展按键

3 参考代码

使用按键“WSAD”进行亮度和对比对调节,也可以使用trackbar进行调节.


#include "stdio.h"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;

void onLightCallback(int pos,void * usrData)
{
	std::cout << pos << std::endl;
	// 强制类型转换
	Mat src = *(Mat*)(usrData);
	Mat dst;
	add(src, Scalar(pos, pos, pos), dst);
	imshow("亮度与对比度调节", dst);
}
void onContrastCallback(int pos, void* usrData)
{
	std::cout << pos << std::endl;
	pos = pos;
	Mat src = *(Mat*)(usrData);
	Mat dst;
	multiply(src, Scalar(pos, pos, pos), dst);
	imshow("亮度与对比度调节", dst);
}

int main()
{

	cv::Mat srcImage=cv::imread("E:/image/lena.png");
	int lightValue = 0;
	int contrastValue = 0;
	namedWindow("亮度与对比度调节",WINDOW_FREERATIO);
	createTrackbar("亮度:", "亮度与对比度调节",&lightValue,100, onLightCallback,&srcImage);
	createTrackbar("对比度:", "亮度与对比度调节", &contrastValue, 5, onContrastCallback, &srcImage);
	imshow("亮度与对比度调节", srcImage);
	while (true) {

		int key = cv::waitKey(30); // 30ms延迟
		if (key >= 0)
		{
			std::cout << key << std::endl;
			// 常规按键检测(ASCII码)
			if (key == 's') { // 保存图像
				std::cout << "Image saved!" << std::endl;
			}
			// 特殊按键检测
			else if (key == 27 || key == 'q') { // ESC或Q退出
				break;
			}
			else if (key == 'a') { //
				lightValue = lightValue + 10;
				onLightCallback(lightValue, &srcImage);
			}
			else if (key == 'w') { // 
				contrastValue = contrastValue + 1;
				onContrastCallback(contrastValue, &srcImage);
			}
			else if (key == 'd') { // 
				lightValue = lightValue - 10;
				onLightCallback(lightValue, &srcImage);
			}
			else if (key == 's') { // 
				contrastValue = contrastValue - 1;
				onContrastCallback(contrastValue, &srcImage);
			}
		}
	}
	cv::destroyAllWindows();
	return 0;
}

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值