文章:Registration of multi-view point sets under the perspective of expectation-maximization
代码:跳转中...
日期:2020年
1)摘要
多视点集的配准是 3D 模型重建的前提条件。为了解决这个问题,以前的大多数方法要么部分探索可用信息,要么盲目地利用不必要的信息来对齐每个点集,这可能会导致不希望的结果或引入额外的计算复杂性。为此,该文章将多视图配准问题视为最大似然估计问题,并提出了一种在期望最大化 (EM) 角度下的新型多视图配准方法。该方法的基本思想是,不同数据点由相同数量的高斯混合模型 (GMM) 生成。对于一个点集中的每个数据点,可以从其他对齐良好的点集中搜索其最近的邻域点。然后,可以假设这个数据点是由特殊的 GMM 生成的,它由遵循一个高斯分布的每个最近邻组成。基于此假设,能够将多视图匹配包括的所有刚性变换定义为似然函数是合理的。随后,利用 EM 算法最大化似然函数,以估计所有刚性变换。最后,在几个基准数据集上对所提出的方法进行了测试,并与一些最先进的算法进行了比较。实验结果表明,它在多视点集配准的准确性、鲁棒性和效率方面具有超强的性能。
2)创新点
①该方法假设从相同数量的 GMM 中生成不同的数据点,这些 GMM 对所有高斯分量使用相等的协方差和相等的权重。给定一个数据点,每个其他点集中都存在一个 NN,可以将其视为相应 GMM 的一个质心来生成数据点本身。由于可以有效地搜索每个 GMM 的所有质心并以相等的协方差分配,因此该方法只需要估计所有刚性变换以及一个 GMM 的协方差。
3)算法结构
所提出的方法假设不同的匹配良好的数据点是从不同的 GMM 生成的,所有这些数据点都由 (M − 1) 相等的分量组成。对于一个点集中的每个数据点,例如 v4,l ∈ V,一旦从点集中心坐标系旋转并平移到模型中心坐标系,就会在彼此匹配良好的点集中有一个最近的邻域点。这些最近邻表示用于生成数据点本身的特殊 GMM 的所有质心。即点集中每个数据点由其他数据中最近点构建的GMM确定。
A. PROBLEM FORMULATION
文中对所有GMM分量使用相等的协方差和相等隶属度概率,在这个假设基础上,可以将数据点 vi,l 的联合概率表述如下:
其中 M’ = (M − 1),Ri ∈ R3×3 和 ti ∈ R3 分别表示第 i 个刚体变换的旋转矩阵和平移向量。为简单起见,为施加在数据点 vi,l 上的刚性变换 {Ri , ti} 定义函数 φ(vi,l) = Ri*vi,l + ti。
为了考虑噪声和异常值,必须在概率函数中添加额外的均匀分布:
其中 w 是表示异常值比率的参数,U(M) = 1/M 表示由多视图配准中涉及的点集数量参数化的均匀分布。如上述方程所示,概率函数包含多视图配准的所有刚性变换。因此,它需要估计这些模型参数,这可以通过最大化相应的似然函数来实现。
B. 基于EM框架的多视图匹配方法
由于可以通过最大化似然函数来实现模型参数的估计,文中使用的是 EM 算法。因此,有必要定义一组隐藏变量,其中
表示观测值 vi,l 来自高斯分布
。给定所有点集V,模型参数可以通过最大期望整个数据对数似然函数来估计,如下所示:
由于对所有 GMM 分量使用相等的成员概率,因此 P(Z; Θ) 表示常数项最后,ε(Θ|V, Z) 可以重新表述为:
为简单起见,可以合理地假设所有数据点都是独立的并且分布相同。因此,上述方程可以直接改写为:
其中和 |Σ|表示矩阵 Σ 的行列式。为简单起见,将每个高斯分布限制为各向同性协方差,即
,其中 I3 表示 3 × 3 单位矩阵。因此,上述方程可以重新表述为:
其中 d 表示点尺寸,例如 d = 3 表示范围点。
由于这些参数属于特殊正交 SO(3),因此应特别注意它们的估计。最后,多视图配准可以表述为约束优化问题:
这个优化问题可以通过 EM 算法来解决,并通过在 E-step 中建立点对应来增强该算法。
B1. E-step
在此步骤中,需要计算从相应 GMM 的每个分量生成的一个数据点 vi,l 的后验概率。在计算之前,它需要指定每个 GMM 的质心。
B1-1 E-Corresponding-step
给定从上一次迭代中获得的参数集,很容易将所有点集转换为相同的坐标系。那么,对于第 i 个点集中的一个数据点 vi,l,需要在每个相对的点集中找到它对应的点:
上述式子表示 NN 搜索问题,可以通过基于 k-d 树的方法有效解决。对于一个点集中的每个数据点,将从其他点集中搜索个对应的点,并将其视为 GMM 的质心以生成数据点本身。
B1-2 E-Probability-step
给定质心和协方差 Σ,很容易计算由高斯分布
生成的数据点 vi,l 的后验概率如下:
其中表示异常值项,符号 βi,l,j 表示高斯分布的概率密度,定义为:
因此,表示 vi,l 为外点的后验概率。
B2. M-step
给定 αi,l,j 和 c(j, l) 的当前值,此步骤需要通过最大化函数 f(Θ) 来估计所有变换。尽管需要对多个点集进行 M 刚性变换的估计,但可以针对每个点集独立进行估计。更具体地说,我们可以通过将其他刚性变换和标准差σ设置为其当前值来替代估计一个刚性变换。因此,第 i 个点集的刚性变换可以从 constrained 问题中估计出来:
上述方程表示加权最小二乘法 (LS) 问题。由于参数 Ri 是一个特殊矩阵,因此可以使用基于奇异值分解 (SVD) 的方法来解决这个加权 LS 问题。
为了便于分析,函数 J(Ri , ti) 定义为:
将 J(Ri ti) 与相应的 ti 进行导数,很容易得到以下结果:
设 ∂J/∂ti = 0,平移向量估计为:
因此,函数 J(Ri , ti) 可简化为:
其中:
因此,旋转矩阵 Ri 是通过最小化函数 J(Ri) 来估计的,函数扩展如下:
然后,利用奇异值分解方法进行旋转矩阵求解:
(1) 计算矩阵 H 及其奇异值分解 (SVD) 结果:
(2)估计旋转矩阵:
基于获取的旋转矩阵,很容易得到平移向量 ti 的估计。在估计第 i 个刚性变换后,需要估计下一个刚性变换,直到 EMPMR 获得所需的多视图配准结果。最后,当所有刚性变换都已更新时,它需要更新 GMM 的协方差矩阵 Σ。取 f(Θ) 与 σ2 的导数,并将其设置为 0,Σ 可以更新为:
其中,
当协方差满足所设置的收敛条件时,则当前的变换矩阵则为多试图匹配结果。其算法伪代码可描述如下:
4)实验
上表为实验测试数据集。
上图为截面形式的多视图对准结果。(a) 对齐的 3D 模型。(b) 初步结果。(c) K-means 方法的结果。(d) MATrICP 方法的结果。(e) JRMPC 方法的结果。(f) EMPMR结果。
上表为受低高斯噪声 (SNR=50dB) 干扰的 6 个数据集的比较结果(平均值±标准),其中粗体数字表示最佳性能。
上表为受高斯噪声 (SNR=25dB) 干扰的 6 个数据集的比较结果(平均值±标准),其中粗体数字表示最佳性能。
六个数据集的平均运行时间比较。(a) 在 SNR=50dB 噪声下的结果,其中 [14.8358, 3.0061, 2.4601, 3.669, 3.7294, 11.9983] 分钟对应于每个数据集的 100% 运行时间。(b) 在 SNR=25dB 噪声下的结果,其中 [11.4680, 3.0056, 2.4868, 3.7176, 3.7298, 11.4713] 分钟对应于每个数据集的 100% 运行时间。
不同 w. (a) 旋转误差 EMPMR 的多视图配准误差。(b) 平移误差
上图显示了 6 个数据集上具有不同 α 值的实验结果。可以观察到:1) w ∈ [0.0005, 0.05] 的设置更有可能获得多视图配准的准确结果。2) 只要在合适的范围内(即 0.0005 到 0.05)选择 w,EMPRM 的性能就会有很小的变化。总而言之,只要从合适的范围内选择 EMPRM 对其参数 w 相对不敏感。这使得 ap 变得容易
5)结论
在期望最大化视角下,该文章提出了一种有效的多视图点集配准方法。在此方法中,假定每个数据点都是从一个 GMM 生成的,该 GMM 由其他相反点集中的所有 NN 指定。通过这种方式,所提出的方法可以在平等的基础上对待所有点集:不同的点是相同数量的 GMM 的实现,并且多视图配准被转换为最大似然估计问题。为了实现多视图配准,推导了基于 EM 的算法,以最大化似然函数并估计所有点集的刚性变换。实验结果表明,它在准确性、稳健性和效率方面优于最先进的方法。此外,这种方法可以应用于 3D 场景重建。