登山第十二梯:多视图点云配准——面面俱到

文章:Registration of multi-view point sets under the perspective of expectation-maximization

代码:跳转中...

日期:2020年

1)摘要

        多视点集的配准是 3D 模型重建的前提条件。为了解决这个问题,以前的大多数方法要么部分探索可用信息,要么盲目地利用不必要的信息来对齐每个点集,这可能会导致不希望的结果或引入额外的计算复杂性。为此,该文章将多视图配准问题视为最大似然估计问题,并提出了一种在期望最大化 (EM) 角度下的新型多视图配准方法。该方法的基本思想是,不同数据点由相同数量的高斯混合模型 (GMM) 生成。对于一个点集中的每个数据点,可以从其他对齐良好的点集中搜索其最近的邻域点。然后,可以假设这个数据点是由特殊的 GMM 生成的,它由遵循一个高斯分布的每个最近邻组成。基于此假设,能够将多视图匹配包括的所有刚性变换定义为似然函数是合理的。随后,利用 EM 算法最大化似然函数,以估计所有刚性变换。最后,在几个基准数据集上对所提出的方法进行了测试,并与一些最先进的算法进行了比较。实验结果表明,它在多视点集配准的准确性、鲁棒性和效率方面具有超强的性能。

2)创新点

方法假设从相同数量的 GMM 中生成不同的数据点,这些 GMM 对所有高斯分量使用相等的协方差和相等的权重。给定一个数据点,每个其他点集中都存在一个 NN,可以将其视为相应 GMM 的一个质心来生成数据点本身。由于可以有效地搜索每个 GMM 的所有质心并以相等的协方差分配,因此该方法只需要估计所有刚性变换以及一个 GMM 的协方差。

3)算法结构

        所提出的方法假设不同的匹配良好的数据点是从不同的 GMM 生成的,所有这些数据点都由 (M − 1) 相等的分量组成。对于一个点集中的每个数据点,例如 v4,l ∈ V,一旦从点集中心坐标系旋转并平移到模型中心坐标系,就会在彼此匹配良好的点集中有一个最近的邻域点。这些最近邻表示用于生成数据点本身的特殊 GMM 的所有质心。即点每个数据点其他数据最近构建GMM确定

A. PROBLEM FORMULATION

        文中对所有GMM分量使用相等协方差相等隶属度概率这个假设基础上可以数据点 vi,l 的联合概率表述如下

其中 M’ = (M − 1),Ri ∈ R3×3 和 ti ∈ R3 分别表示第 i 个刚体变换的旋转矩阵和平移向量。为简单起见,为施加在数据点 vi,l 上的刚性变换 {Ri , ti} 定义函数 φ(vi,l) = Ri*vi,l + ti。

        为了考虑噪声和异常值,必须在概率函数中添加额外的均匀分布:

其中 w 是表示异常值比率的参数,U(M) = 1/M 表示由多视图配准中涉及的点集数量参数化的均匀分布。如上述方程所示,概率函数包含多视图配准的所有刚性变换。因此,它需要估计这些模型参数,这可以通过最大化相应的似然函数来实现。

B. 基于EM框架匹配方法

        由于可以通过最大化似然函数来实现模型参数的估计,文中使用的是 EM 算法。因此,有必要定义一组隐藏变量,其中表示观测值 vi,l 来自高斯分布。给所有V模型参数可以通过最大期望整个数据对数似然函数来估计,如下所示:

        由于对所有 GMM 分量使用相等的成员概率,因此 P(Z; Θ) 表示常数项最后,ε(Θ|V, Z) 可以重新表述为:

        为简单起见,可以合理地假设所有数据点都是独立的并且分布相同。因此,上述方程可以直接改写为:

其中和 |Σ|表示矩阵 Σ 的行列式。为简单起见,将每个高斯分布限制为各向同性协方差,即,其中 I3 表示 3 × 3 单位矩阵。因此,上述方程可以重新表述为:

其中 d 表示点尺寸,例如 d = 3 表示范围点

由于这些参数属于特殊正交 SO(3),因此应特别注意它们的估计。最后,多视图配准可以表述为约束优化问题:

        这个优化问题可以通过 EM 算法来解决,并通过在 E-step 中建立点对应来增强该算法。

B1. E-step

        在此步骤中,需要计算从相应 GMM 的每个分量生成的一个数据点 vi,l 的后验概率。在计算之前,它需要指定每个 GMM 的质心。

B1-1 E-Corresponding-step

        给定从上一次迭代中获得的参数集,很容易将所有点集转换为相同的坐标系。那么,对于第 i 个点集中的一个数据点 vi,l,需要在每个相对的点集中找到它对应的点:

        上述式子表示 NN 搜索问题,可以通过基于 k-d 树的方法有效解决。对于一个点集中的每个数据点,将从其他点集中搜索个对应的点,并将其视为 GMM 的质心以生成数据点本身。

B1-2 E-Probability-step

        给定质心和协方差 Σ,很容易计算由高斯分布生成的数据点 vi,l 的后验概率如下:

其中表示异常值项,符号 βi,l,j 表示高斯分布的概率密度,定义为:

        因此,表示 vi,l 为外点的后验概率。

B2. M-step

        给定 αi,l,j 和 c(j, l) 的当前值,此步骤需要通过最大化函数 f(Θ) 来估计所有变换。尽管需要对多个点集进行 M 刚性变换的估计,但可以针对每个点集独立进行估计。更具体地说,我们可以通过将其他刚性变换和标准差σ设置为其当前值来替代估计一个刚性变换。因此,第 i 个点集的刚性变换可以从 constrained 问题中估计出来:

        上述方程表示加权最小二乘法 (LS) 问题。由于参数 Ri 是一个特殊矩阵,因此可以使用基于奇异值分解 (SVD) 的方法来解决这个加权 LS 问题。

        为了便于分析,函数 J(Ri , ti) 定义为:

将 J(Ri ti) 与相应的 ti 进行导数,很容易得到以下结果:

设 ∂J/∂ti = 0,平移向量估计为:

因此函数 J(Ri , ti) 简化为

其中

        因此,旋转矩阵 Ri 是通过最小化函数 J(Ri) 来估计的,函数扩展如下:

        然后,利用奇异值分解方法进行旋转矩阵求解

(1) 计算矩阵 H 及其奇异值分解 (SVD) 结果:

2估计旋转矩阵

        基于获取的旋转矩阵,很容易得到平移向量 ti 的估计。在估计第 i 个刚性变换后,需要估计下一个刚性变换,直到 EMPMR 获得所需的多视图配准结果。最后,当所有刚性变换都已更新时,它需要更新 GMM 的协方差矩阵 Σ。取 f(Θ) 与 σ2 的导数,并将其设置为 0,Σ 可以更新为:

其中

协方差满足所设置收敛条件当前变换矩阵多试图匹配结果算法伪代码描述如下

4)实验

实验测试数据集

上图截面形式的多视图对准结果。(a) 对齐的 3D 模型。(b) 初步结果。(c) K-means 方法的结果。(d) MATrICP 方法的结果。(e) JRMPC 方法的结果。(f) EMPMR结果。

受低高斯噪声 (SNR=50dB) 干扰的 6 个数据集的比较结果(平均值±标准),其中粗体数字表示最佳性能。

受高斯噪声 (SNR=25dB) 干扰的 6 个数据集的比较结果(平均值±标准),其中粗体数字表示最佳性能

六个数据集的平均运行时间比较。(a) 在 SNR=50dB 噪声下的结果,其中 [14.8358, 3.0061, 2.4601, 3.669, 3.7294, 11.9983] 分钟对应于每个数据集的 100% 运行时间。(b) 在 SNR=25dB 噪声下的结果,其中 [11.4680, 3.0056, 2.4868, 3.7176, 3.7298, 11.4713] 分钟对应于每个数据集的 100% 运行时间。

不同 w. (a) 旋转误差 EMPMR 的多视图配准误差。(b) 平移误差

        上图显示了 6 个数据集上具有不同 α 值的实验结果。可以观察到:1) w ∈ [0.0005, 0.05] 的设置更有可能获得多视图配准的准确结果。2) 只要在合适的范围内(即 0.0005 到 0.05)选择 w,EMPRM 的性能就会有很小的变化。总而言之,只要从合适的范围内选择 EMPRM 对其参数 w 相对不敏感。这使得 ap 变得容易

5)结论

        在期望最大化视角下,该文章提出了一种有效的多视图点集配准方法。在此方法中,假定每个数据点都是从一个 GMM 生成的,该 GMM 由其他相反点集中的所有 NN 指定。通过这种方式,所提出的方法可以在平等的基础上对待所有点集:不同的点是相同数量的 GMM 的实现,并且多视图配准被转换为最大似然估计问题。为了实现多视图配准,推导了基于 EM 的算法,以最大化似然函数并估计所有点集的刚性变换。实验结果表明,它在准确性、稳健性和效率方面优于最先进的方法。此外,这种方法可以应用于 3D 场景重建。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云登山者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值