基于机器学习的网络购物平台的智能推荐系统

  在本网站是基于internet环境下实现的典型B/S模式。在这个网站中,以Windows为操作系统平台,采用python技术进行开发,同时借助pycharm作为开发工具,数据库采用MySql,,通过后台负责数据库的管理
(1)文献法:查阅相关论文、学刊等资料,收集各方面文献。结合研究的课题进行具体分析;
(2)访谈法:与指导老师同学交流,获得更多信息与相关的知识。
(3)理论学习与实践相结合的方法:通过对所使用开发软件的学习与理解,分析和比较各种框架和设计模式的优点与不足,最终确定自己的见解。

主要分为四大模块:首页模块、列表页模块、详情页模块、用户中心模块。实现数据可视化以及智能推荐。具体以网站的形式呈现。
1.    用户管理模块
用户注册与登录:支持用户通过邮箱、手机号等方式注册新账号,并通过账号和密码登录系统。
个人信息管理:允许用户修改个人信息,如头像、昵称、简介等,。
2.智能推荐模块
用户打开首页系统根据一定算法进行推荐
3.    协同过滤算法模块
用户登录后根据收藏,购买等行为进行推荐。
4.    购物车模块
购物车可以添加、删除商品。
5.    商品模块
商品管理:商品发布、编辑、商品分类与管理。
商品分类
商品品牌
6. 订单模块
用户可以查看订单状态、历史订单记录,增加支付与退款管理
7.论坛交流系统支持发帖、评论、点赞等社交功能,促
进用户之间的互动和分享。
本课题使用Python语言进行开发。代码层面的操作主要在PyCharm中进行,将系统所使用到的表以及数据存储到MySQL数据库中,方便对数据进行操作本课题基于WEB的开发平台
1.    用户管理模块
用户注册与登录:支持用户通过邮箱、手机号等方式注册新账号,并通过账号和密码登录系统。
个人信息管理:允许用户修改个人信息,如头像、昵称、简介等,。
2.智能推荐模块
用户打开首页系统根据一定算法进行推荐
3.    协同过滤算法模块
用户登录后根据收藏,购买等行为进行推荐。
4.    购物车模块
购物车可以添加、删除商品。
5.    商品模块
商品管理:商品发布、编辑、商品分类与管理。
6. 订单模块
用户可以查看订单状态、历史订单记录,增加支付与退款管理
 

本教程为官方授权出品伴随着大数据时代的到来,作为发掘数据规律的重要手段,机器学习已经受到了越来越多的关注。而作为机器学习算法在大数据上的典型应用,推荐系统已成为各行业互联网公司营销体系中不可或缺的一部分,而且已经带来了真实可见的收益。目前,推荐系统机器学习已经成为各大公司的发力重点,众多知名公司(如亚马逊、netflix、facebook、阿里巴巴、京东、腾讯、新浪、头条等)都在着眼于将蕴含在庞大数据中的宝藏发掘出来,懂机器学习算法的大数据工程师也成为了新时代最紧缺的人才。精心打造出了机器学习推荐系统课程,将机器学习理论推荐系统项目实战并重,对机器学习推荐系统基础知识做了系统的梳理和阐述,并通过电影推荐网站的具体项目进行了实战演练,为有志于增加大数据项目经验、扩展机器学习发展方向的工程师提供更好的学习平台。本课程主要分为两部分,机器学习推荐系统基础,电影推荐系统项目实战。第一部分主要是机器学习推荐系统基础理论的讲解,涉及到各种重要概念和基础算法,并对一些算法用Python做了实现;第二部分以电影网站作为业务应用场景,介绍推荐系统的开发实战。其中包括了如统计推荐、基于LFM的离线推荐、基于模型的实时推荐、基于内容的推荐等多个模块的代码实现,并各种工具进行整合互接,构成完整的项目应用。通过理论和实际的紧密结合,可以使学员对推荐系统这一大数据应用有充分的认识和理解,在项目实战中对大数据的相关工具和知识做系统的回顾,并且可以掌握基本算法,入门机器学习这一前沿领域,为未来发展提供更多的选择,打开通向算法工程师的大门。谁适合学:1. 有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员2. 有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员3. 有较好的数学基础,希望学习机器学习推荐系统相关算法的求职人员
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值