收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
前言
针对共享单车用户在寻找车辆时面临的困难,本研究首次从用户的角度对共享单车的预测进行了探索和设计。借助大数据技术,我们处理了大量的共享单车数据,并对预测模型进行了训练。利用时间和地点数据,我们能够预测用户周围未来一段时间内的单车分布情况,并通过可视化地图展示预测结果。与当前面向商家的单车预测方法相比,我们的方法更加注重用户需求,不仅能帮助用户更方便地找到可用车辆,提升租车体验,还能帮助运营商提高服务质量。因此,我们的预测方法具有实用性和可操作性,对共享单车用户和运营商都具有重要意义。
详细视频演示
文章底部名片,联系我看更详细的演示视频
一、项目介绍
为了评判预测模型的准确率,可选用选用均方根误差对预测模型进行评价。便可以更加准确地通过可视化视图来表现出共享单车流量趋势,以供用户使用。
二、功能介绍
1.预测算法流程
采用理论分析、算法设计和实验校验相结合的方法,我们将构建一个预测模型,并使用共享单车的大数据进行模型训练。该模型将能够预测用户周围未来一段时间内单车的汇集趋势。我们将程序划分为4个模块,包括大数据分析与处理、预测模型构建与训练、单车汇集趋势预测和结果可视化。
2.大数据分析与预测
首先对数据集进行数据清洗,去掉节假日的特殊情况,检查数据的完整性、合法性与一致性,以便对数据进行处理。
3.模型构建与训练
构建深度神经网络模型,LSTM线性回归模型,并运用共享单车的数据对模型进行训练,预测未来某时间段内某个地点对共享单车的需求量,提前对各站点的共享单车进行配置。从共享单车大数据集中,将数据集的 80% 的数据记录作为训练集,20% 的数据记录作为验证集,以验证模型的准确率。
4.单车汇集趋势预测
为了预测用户周围未来一段时间内的单车汇集趋势,先获取用户的时间位置信息,根据时间位置数据进行预测。
5.预测结果可视化
将预测结果进行可视化显示。
三、核心代码
部分代码:
# In[1]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
from scipy.stats import boxcox,yeojohnson
# In[2]:
data = pd.read_csv('./london_merged.csv')
# In[3]:
data.head()
# In[4]:
data.shape
# In[5]:
data.info()
# ****大部分数据是数字而不是时间戳****
# In[6]:
data.describe().T
# ### 从以上数据我们可以推断——
# - 季节、假日、周末、天气尽管是数字,但本质上是绝对的
# - 平均实际温度约为 12.5 摄氏度
# - 平均感觉温度在 11.5 摄氏度左右
# - 车手计数平均值约为 1143,但最大值为 7860,因此存在一些异常值
# In[7]:
data['timestamp'] = pd.to_datetime(data['timestamp'])
data['year'] = data['timestamp'].dt.year
data['month'] = data['timestamp'].dt.month
data['hour'] = data['timestamp'].dt.hour
# In[8]:
data.head()
# In[9]:
# 查看缺失值,后面可以画图更加直观
data.isnull().sum()
# In[10]:
print('数据的结构是:', data.shape)
print('数据类型为:', data.dtypes)
print('数据列为:', data.columns)
# In[11]:
data['season'].value_counts(ascending=False)
# In[12]:
# 使用 missingno 绘制缺失值图,可以看到没有缺失值
import missingno as msno
msno.matrix(data)
plt.show()
# In[13]:
# 大部分是工作日,节假日的数据很少
data['is_holiday'].value_counts()
# In[14]:
# 26 和 10 的天气数据很少
data['weather_code'].value_counts(ascending=False)
# In[15]:
# 周末的数据依然是没有工作日多
data['is_weekend'].value_counts()
# In[16]:
# 大多数预订数据来自天气类型 1,其次是类型 2 和类型 3。
data.groupby(['weather_code'])['cnt'].mean()
四、效果图
五 、源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻