pandas-处理丢失的数据(fillna)

本文详细介绍了Pandas库中fillna方法的使用,包括如何填充缺失值,使用value、method、limit等参数的具体操作,以及在DataFrame中如何进行操作。通过对fillna方法的理解,可以更有效地处理数据集中的NaN值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None,     
                 downcast=None)

参数解释:

  • value:用于填充的空值的值。
  • method: {'backfill', 'bfill', 'pad', 'ffill', None}, default None。定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值, backfill / bfill表示用后面行/列的值,填充当前行/列的空值。
  • axis:轴。0或'index',表示按行删除;1或'columns',表示按列删除。
  • inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。
  • limit:int, default None。如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断)
  • downcast:dict, default is None,字典中的项为,为类型向下转换规则。或者为字符串“infer”,此时会在合适的等价类型之间进行向下转换,比如float64 to int64 if possible。
     

1. 使用fillna()方法填充缺失值

2. 参数method使用

 3. 参数value的使用

4. 参数limit 的使用

5. 使用 DataFrame 填充时,替换沿相同的列名和相同的索引发生 

 

6. 使用pandas对象填充

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值