凸优化的预备知识

本文中,我们对凸优化要求的基本知识进行基本的介绍。大家不要嫌烦,这已经是我能想到最少的了。

1. 线性代数

\{ v_{1}, v_{2},\cdots, v_{k} \}是空间R^{k}的一组基,若\forall w \in R^{k}, \exists \alpha_{1}, \alpha_{2},\cdots, \alpha_{k}, w = \sum_{i} \alpha_{i} v_{i}

换言之,任意一个向量w 都要能够被这组基 线性表示。 

于此,我们可以引出线性不相关。

即若v_{1}, v_{2},\cdots, v_{k}中,彼此都无法被剩余的k-1 个向量线性表示,则v_{1}, v_{2},\cdots, v_{k}线性无关。

线性无关,这里咱们举个例子:

a = [1 0 0 ] b=[0 1 0] c= [ 0 0 1], 显然a,b,c是线性相关的。

最后,根据上面的例子,我们给出,一组基的向量之间,彼此都是线性无关的。

接着我们定义线性运算 内积

u\cdot v = u^{T}v = <u,v>=\sum_{i=1}^{n} u_{i}v_{i}

外积(矩阵)

u\times v =M, M_{i,j}= u_{i}v_{j}

柯西施瓦茨不等式:

<u,v>\leq ||u||_{2}||v||_{2} 

这个不等式的证明网上特别的多,简单来说就是<u,v>= ||u||_{2}||v||_{2}\cos(\theta), 这里\theta是向量u,v之间的夹角,所以就简单证明了。

根据这个知识点,我们给出向量在另一个向量上的投影的快速计算方法,如我们需要计算向量u在向量v方向上的投影,如下图所示:

投影是蓝色这条线,方向应该和v是一个方向。那么我们如何快速计算呢?

首先给出v的方向:

\frac{ v }{ ||v||_{2} }

然后我们计算蓝色线条的长度,根据勾股定理,容易得到

||u||_{2}\cos(\theta)

 这里\theta是向量u,v之间的夹角

因此,向量u在向量v方向上的投影为:

\frac{v}{||v||_{2}}||u||_{2}\cos(\theta)=\frac{<u,v>v}{||v||_{2}^{2}}

有了投影这个说法之后,我们就有一个新的东西,即:

一个向量 u 对子空间的投影,如果子空间的基\{ v_{1}, v_{2},\cdots, v_{k} \}相互正交,且长度为1,那么

 该向量在子空间的投影,等于该向量在每一个基向量上投影之和。

Proj_{(v_{1},v_{2}.\cdots, v_{k} )}(u) = <u,v_{1}>v_{1}+ <u,v_{2}>v_{2}+\cdots+<u,v_{k}>v_{k}

其实这里讲的意思就是我们很熟悉的矢量的分解与合成差不多。

接着我们说向量的Lp范数

||x||_{p} = ( \sum_{i} |x_{i}|^{p} )^{1/p}这里的p可以取 1 2 无穷。注意,如果p取无穷,就代表取向量x中绝对自最大的元素。

三角不等式:

\begin{aligned} &||u||_{2} + ||v||_{2} \geq ||u-v||_{2}\\ &||x-y||_{2}^{2} \leq ||x-w||_{2}^{2} + ||y-w||_{2}^{2} \end{aligend}

三角不等式的证明网上也有很多,这里我就不过分赘述了。

 

接着是矩阵的秩;

其实矩阵可以按行 和列 分别写成行向量形式 与列向量形式, 那么不论行向量形式 还是列向量形式,我们都可以从中发现有多少个线性无关的行向量 或者列向量, 因此线性无关的行向量 或者列向量的个数称为 矩阵的秩。

一个矩阵对应着几个特殊的空间:

零空间:Mx =0,x所构成的空间

值空间:y=Mx, y所构成的空间

因此,如果一个矩阵M \in R^{m\times n}的秩为m 或者n,我们称为满秩矩阵

如果一个方阵M \in R^{n\times n}的秩为n, 则其值空间为R^{n}, 零空间为{0}。

如果一个矩阵的行列式值为0, 则该矩阵一定不满秩。

接着我们聊一聊什么是线性子空间:

所谓子空间就是对加法和放缩(scaling)运算封闭的向量集合。

一个子空间的正交补:

设V是一个子空间, 其正交补V^{\perp } = \{w:<w,v>=0, \forall v\in V \},w是一个与子空间V中任何向量都正交的这么一个向量

仿射子空间:

对于一个集合C中两个不同的点x_{1}, x_{2}, 对于任意\theta \in R

\theta x_{1 }+ (1-\theta) x_{2} \in C

 上面的变换着称为仿射变换

接着是特征值与特征向量

设M是一个矩阵, 则满足

Mv = \lambda v

的向量v 称为特征向量, 对应的\lambda称为特征值

如果M是一个对称矩阵, 即M=M^{T}, 且其所有特征值为实数,特征向量之间彼此正交。同时我们可以对M 进行谱分解

M = \sum_{i}\lambda_{i} v_{i}\times v_{i} x代表外积

正定矩阵 与半正定矩阵

即 矩阵M 若任意向量v 都有v^{T}M v \geq 0,则M为半正定矩阵

v^{T}M v \textgreater 0,则M为正定矩阵

好啦,基础知识就这么些,大家可以看到基本都是一些关于线性代数的概念。下一次,咱么就开始进入正题啦。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值