本文中,我们对凸优化要求的基本知识进行基本的介绍。大家不要嫌烦,这已经是我能想到最少的了。
1. 线性代数
是空间
的一组基,若
换言之,任意一个向量w 都要能够被这组基 线性表示。
于此,我们可以引出线性不相关。
即若中,彼此都无法被剩余的k-1 个向量线性表示,则
线性无关。
线性无关,这里咱们举个例子:
a = [1 0 0 ] b=[0 1 0] c= [ 0 0 1], 显然a,b,c是线性相关的。
最后,根据上面的例子,我们给出,一组基的向量之间,彼此都是线性无关的。
接着我们定义线性运算 内积
外积(矩阵)
柯西施瓦茨不等式:
这个不等式的证明网上特别的多,简单来说就是, 这里
是向量
之间的夹角,所以就简单证明了。
根据这个知识点,我们给出向量在另一个向量上的投影的快速计算方法,如我们需要计算向量在向量
方向上的投影,如下图所示:
投影是蓝色这条线,方向应该和v是一个方向。那么我们如何快速计算呢?
首先给出v的方向:
然后我们计算蓝色线条的长度,根据勾股定理,容易得到
这里是向量
之间的夹角
因此,向量在向量
方向上的投影为:
有了投影这个说法之后,我们就有一个新的东西,即:
一个向量 u 对子空间的投影,如果子空间的基相互正交,且长度为1,那么
该向量在子空间的投影,等于该向量在每一个基向量上投影之和。
其实这里讲的意思就是我们很熟悉的矢量的分解与合成差不多。
接着我们说向量的Lp范数
这里的p可以取 1 2 无穷。注意,如果p取无穷,就代表取向量x中绝对自最大的元素。
三角不等式:
三角不等式的证明网上也有很多,这里我就不过分赘述了。
接着是矩阵的秩;
其实矩阵可以按行 和列 分别写成行向量形式 与列向量形式, 那么不论行向量形式 还是列向量形式,我们都可以从中发现有多少个线性无关的行向量 或者列向量, 因此线性无关的行向量 或者列向量的个数称为 矩阵的秩。
一个矩阵对应着几个特殊的空间:
零空间:,x所构成的空间
值空间:, y所构成的空间
因此,如果一个矩阵的秩为m 或者n,我们称为满秩矩阵
如果一个方阵的秩为n, 则其值空间为
, 零空间为{0}。
如果一个矩阵的行列式值为0, 则该矩阵一定不满秩。
接着我们聊一聊什么是线性子空间:
所谓子空间就是对加法和放缩(scaling)运算封闭的向量集合。
一个子空间的正交补:
设V是一个子空间, 其正交补,w是一个与子空间V中任何向量都正交的这么一个向量
仿射子空间:
对于一个集合C中两个不同的点, 对于任意
有
上面的变换着称为仿射变换
接着是特征值与特征向量
设M是一个矩阵, 则满足
的向量v 称为特征向量, 对应的称为特征值
如果M是一个对称矩阵, 即, 且其所有特征值为实数,特征向量之间彼此正交。同时我们可以对M 进行谱分解
x代表外积
正定矩阵 与半正定矩阵
即 矩阵M 若任意向量v 都有,则M为半正定矩阵
若,则M为正定矩阵
好啦,基础知识就这么些,大家可以看到基本都是一些关于线性代数的概念。下一次,咱么就开始进入正题啦。