
计算机视觉与深度学习
不要影响我叠Q
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
dicom格式转成nii.gz文件
dcm文件转nii.gz文件原创 2022-06-18 23:45:38 · 1637 阅读 · 6 评论 -
pytorch使用profiler对模型性能分析时报错
源码(参考自:PyTorch模型性能分析、优化及部署 (aliyun.com)):def analysis(): from torch.profiler import profile, tensorboard_trace_handler import time img_size = [96, 96, 96] model = VAN(img_size=img_size, in_chans=4, num_classes=3) model.eval() in原创 2022-04-21 10:54:10 · 4079 阅读 · 0 评论 -
ITK-SNAP截图时关闭十字定位线
直接按字母x即可。这方法是我在一个医学图像处理群学到的,但总是记不住,特写下博客做个笔记原创 2022-04-12 20:46:48 · 5009 阅读 · 0 评论 -
深度学习模型内部子层执行顺序查看
使用Keras中的summary()函数即可对模型内部的层数进行可视化,pytorch选手可先安装torchkeras包,再进行可视化。该函数的打印顺序和子层的调用顺序是一致的,和子层的定义顺序无关。论据如下:from torchkeras import summaryclass TestModel(torchkeras.Model): def __init__(self): super(TestModel, self).__init__() self.c原创 2022-04-08 20:40:19 · 1520 阅读 · 0 评论 -
空洞卷积,转置空洞卷积输入与输出的关系
空洞卷积:转置空洞卷积:上述二者计算公式参考pytorch源码感受野的计算(参考:吃透空洞卷积 (Dilated Convolutions) - 极市社区):latex源码:F_{0} = 1\\k'_{n} = k_{n} + (k_{n}-1)\times(d_{n}-1)\\F_{n} = F_{n-1} + (k'_{n}-1)\times \prod_{i=1}^{n-1}s_{i}\\F_{n}表示第n层感受野, k_{n}表示第n层卷积核大小\\d_{n.原创 2022-04-01 13:31:23 · 1424 阅读 · 0 评论 -
医学图像分割结果保存
由于医学图像的空间分辨率一般很高,一般训练集都是采用随机裁剪输入到网络进行训练,而对于验证集和测试集,则一般使用滑动窗口推理方法进行预测,滑动窗口方法一般分为在线切图和离线切图,离线切图比较劝退(大佬就可以忽略这句话),很那实现。在线切图在monai中已经被实现了,调用代码如下:from monai.inferers import sliding_window_inference通过滑动窗口推理方法推理出来的分割结果在空间尺寸上(h,W,D三个维度)和原始图像是一致的。然后再使用monai.dat原创 2022-03-29 10:38:17 · 5931 阅读 · 0 评论 -
医学图像处理模板 pytorch_lightning+monai
# -*-coding:utf-8-*-import pytorch_lightning as plfrom monai import transformsimport numpy as npfrom pytorch_lightning.callbacks import EarlyStopping, ModelCheckpointfrom monai.config import KeysCollectionfrom monai.utils import set_determinismpl..原创 2021-12-28 10:42:34 · 4555 阅读 · 0 评论 -
monai读取图片报错
mona使用transformer.LoadImage或者LoadImaged读取图片报错:monai ValueError: Unsupported option'.nii', Available options are {'itkreader', 'numpyreader', 'pilreader', 'nibabelreader'}.一个可能的原因是:把LoadImage()当成函数用了,如下:报错的根本原因是LoadImage其实是个类名,LoadImaged也是如此。应当改成下面的就对原创 2021-11-16 16:27:51 · 1662 阅读 · 0 评论 -
深度学习大图切成小块图片代码---针对图像分割而言
1 根据图片大小和patch大小生成切图位置:import globimport os.pathimport numpy as npfrom skimage import io as siofrom params import * # 这个是我自己的一个超参数文件from skimage import exposure# 一般来说,stride = patch_size[0]//2def gen_patch_pos(org_image, patch_size: list = [25原创 2021-08-25 09:03:43 · 3718 阅读 · 6 评论 -
pytorch损失函数的值过大
最近上手pytorch,搭了一个3D版本的Alexnet模型同于对医学图像简单的进行分类,期间又踩了一个坑,损失函数的loss值在第二步就飙到了一万多,查了好几天也没查到为啥,最初是以为图像预处理部分的问题,(图像归一化方式不正确),后来发现是优化器的坑。最初用的优化器是adam,(甚至我还想试试Nadam,可惜截至2021.7.7,pytoch好像没实现这个),然后损失函数的值就成了下面这样(真感人):后来看了个知乎链接(链接如下),说图像领域的优化器最好是选择sgd+动量,试了下,结果发现还原创 2021-07-07 20:33:46 · 4291 阅读 · 0 评论 -
ubuntu20.0.4+RTX3090配置深度学习环境的踩坑
参考链接:https://blog.csdn.net/qq_39478403/article/details/109378705d原创 2021-05-30 13:05:14 · 793 阅读 · 0 评论 -
B站北邮计算机视觉学习笔记
视频地址:https://www.bilibili.com/video/BV1V54y1B7K3?p=10&spm_id_from=pageDriver深度神经网络的层数计算:1、计算 网络层数时仅统计卷积层与全连接层;2、池化层与各种归一化层都是对它们前面卷积层输出的特 征图进行后处理,不单独算作一层。小卷积核的优势:多个小尺寸卷积核串联可以得到与大尺寸卷积核相同的感受野 使用小卷积核串联构建的网络深度更深、非线性更强、参数也更少。平均池化向量化和直接展开向量化的对比.原创 2021-04-22 19:43:36 · 255 阅读 · 0 评论