python的多线程和多进程程序编程

CPU密集型使用多进程,IO密集型使用多线程

查看进程ID和线程ID的命令分别是os.getpid()和threading.current_thread()

多进程使用multiprocessing就可以了,通常使用进程池来完成操作,阻塞主进程使用join方法

多线程使用threading模块,线程池使用concurrent.futures模块,同时主线程的阻塞方法有多种

不管多进程还是多线程,生产消费模型都可以用队列来完成,如果要用多线程操作同一变量记得加锁

多进程

import multiprocessing

import time

def func1():

for i in range(5):

print(f"进程1:{i}")

time.sleep(1)

def func2():

for i in range(5):

print(f"进程2:{i}")

time.sleep(1)

if __name__ == '__main__':

p1 = multiprocessing.Process(target=func1) 创建一个进程

p2 = multiprocessing.Process(target=func2)创建一个进程

p1.start()

p2.start()

p1.join()

p2.join()

多线程

import threading
import time

def func1():
    for i in range(5):
        print(f"线程1:{i}")
        time.sleep(1)

def func2():
    for i in range(5):
        print(f"线程2:{i}")
        time.sleep(1)

t1 = threading.Thread(target=func1) 创建一个线程
t2 = threading.Thread(target=func2) 创建一个线程
t1.start()
t2.start()
t1.join()
t2.join()

import multiprocessing

def func1(x):

return x * x

if __name__ == '__main__':

pool = multiprocessing.Pool(processes=4) 进程池

results = pool.map(func1, [1, 2, 3, 4, 5])

print(results)

import concurrent.futures

def func1(x):

return x * x

executor = concurrent.futures.ThreadPoolExecutor(max_workers=4) 线程池

futures = [executor.submit(func1, x) for x in [1, 2, 3, 4, 5]]

for future in futures:

print(future.result())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值