#include “stdio.h”
#include “stdlib.h”
#include “math.h”
double frand()
{
return 2*((rand()/(double)RAND_MAX) - 0.5); //随机噪声
}
int main()
{
printf(“Hello world!\n”);
float x_last=0;
float p_last=0.02;
float Q = 0.018;
float R = 0.542;
float kg;
float x_mid;
float x_now;
float p_mid;
float p_now;
float z_real = 0.56;
float z_measure;
float sumerror_kalman = 0;
float sumerror_measure = 0;
int i;
x_last = z_real + frand() * 0.03;
x_mid = x_last;
printf("index, x_last, kg, Real, z_measure, Kalman, real-meas, real-now \n" ); //显示
for(i = 0;i < 200; i++)
{
x_mid = x_last; //x_last=x(k-1|k-1),x_mid=x(k|k-1)
p_mid = p_last + Q; //p_mid=p(k|k-1),p_last=p(k-1|k-1),Q=噪声
kg = p_mid / (p_mid + R); //kg为kalman filter,R为噪声
z_measure = z_real + frand() * 0.03;//测量值
x_now = x_mid + kg * (z_measure - x_mid);//估计出的最优值
p_now = (1 - kg) * p_mid;//最优值对应的covariance
if (i == 100)
{
z_real = 1;
}
printf(" %d, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f ,%6.3f, %6.3f \n",i, x_last, kg, z_real, z_measure,x_now ,fabs(z_real-z_measure), fabs(z_real - x_now));
//printf("Real : %6.3f Mesaured :%6.3f [diff:%.3f],Kalman : %6.3f [diff:%.3f] \n",z_real, z_measure,fabs(z_real-z_measure),x_now,fabs(z_real - x_now) ); //显示
//printf("Mesaured : %6.3f [diff:%.3f]\n",z_measure,fabs(z_real-z_measure)); //显示测量值以及真值与测量值之间的误差
// printf("Kalman : %6.3f [diff:%.3f]\n",x_now,fabs(z_real - x_now)); //显示kalman估计值以及真值和卡尔曼估计值的误差
sumerror_kalman += fabs(z_real - x_now); //kalman估计值的累积误差
sumerror_measure += fabs(z_real - z_measure); //真值与测量值的累积误差
p_last = p_now; //更新covariance值
x_last = x_now; //更新系统状态值
}
printf("total meas e : %f\n",sumerror_measure); //输出测量累积误差
printf("total kalman e : %f\n",sumerror_kalman); //输出kalman累积误差
printf("kalman p: %d%% \n",100-(int)((sumerror_kalman/sumerror_measure)*100)); //卡尔曼误差所占比例
return 0;
}