Mask-RCNN应用 - 关于maskrcnn可以接入训练的数据集格式及使用方法问题

本文探讨了在使用MaskRCNN时如何处理不同数据集格式,包括Labelme、COCO和VOC,并提供了格式转换的方法。作者强调了理解数据集格式在实例分割任务中的重要性,并分享了数据集接入MaskRCNN的实践经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MaskRCNN入门路径–> Mask-RCNN应用研究方法 - 持续更新中

如有问题或需要指导,请私聊留下联系方式用手机打开https://m.tb.cn/h.fINaraE?tk=PCzA2jPp4V0进行咨询

Complete:2021/01/31 - 文章内容完成
Update :2021/01/31 - 文章内容更新
吐槽:因为工作原因,好久没有更新了。。偶尔有闲暇的时间能够再次打开博客,决定写一下很多人遇到的问题。倒不是因为这个问题有多么重要,而是在学习和工作中,不仅是Mskrcnn,任何一个神经网络的训练都离不开数据集,而数据集的格式前差万别,本文仅通过记录总结Maskrcnn对于数据集的支持和使用方法,引导各位读者思考自己不同格式数据的接入方法。

前言

1、为什么要讨论数据集的格式及使用问题
  • 我们都知道,目前图像领域常用的数据集标注格式是VOC和COCO两种格式。然而在我们学习和工作工程中,无论是出于保密要求还是处于便利性的考虑,都有可能需要其他类型的数据格式。在这样的前提下,如何将数据集更快的接入到自己的神经网络中,成为大多数人在进行数据处理下面临的必修课之一。
2、Maskrcnn支持什么样的数据格式
  • 当然本文所讨论的Maskrcnn算法依然是matterport/Mask_RCNN
  • Maskrcnn作为实例分割的算法,他的数据集必须带有segementation,不能像Yolo的数据集一样仅仅有Location功能。
  • 在上一个前提下,MaskRCNN对于数据集格式并没有什么特别的限制。作为一个极度开源的python中的一份子,就像标准的充电接口一般,你可以按照自己任意的想法创造自己的电源,只要符合充电接口的标准即可。
  • Maskrcnn对于Labelme、coco、voc数据集都有成熟的接入方案,以下列出

主要数据格式及使用方法

主要数据集格式之间的转换汇总

以下旨在总结比较好的文章,还是注重引导大家自主学习和了解方法,不是一键傻瓜生成,当然有时间我可以尝试做一个。。
关于具体问题以及其中的技巧,可以私信联系我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天木青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值