最小二乘法(Least Squares Method)是一种通过最小化误差平方和来拟合数据的回归分析方法。它被广泛应用于线性回归、多元回归以及其他数据拟合问题中。以下是详细的教程,涵盖基本概念、数学推导、具体步骤和实现代码。
1. 最小二乘法基本概念
最小二乘法是一种用于数据拟合的统计方法,通过最小化观测数据与模型预测值之间的误差平方和,求解模型参数。
2. 线性回归的最小二乘法
线性回归是最简单的最小二乘法应用,假设模型为线性关系: y=β0+β1x 其中,y 是响应变量,x 是自变量,β0 是截距,β1 是斜率。
3. 最小二乘法的数学推导
假设有 n 个观测数据点(xi,yi),最小二乘法通过最小化以下误差平方和S 来求解模型参数:
为了找到最优参数 β0 和 β1,对 S 求偏导数并令其为零:
解这两个方程,得到: