EfficientNet

EfficientNet是一种通过复合缩放网络深度、宽度和分辨率以实现更高准确性和效率的卷积神经网络。研究发现,平衡这三个维度至关重要。通过神经架构搜索设计的基础结构,EfficientNet在ImageNet上达到了84.4%的top-1准确率,同时保持较小的模型大小和更快的推理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文参考博客代码地址1代码地址2

摘要

  卷积神经网络是在固定的资源预算下开发的,如果有更多的资源可用,可以相应地得到更高的准确率。在本文中,我们系统地研究模型压缩并确认小心地平衡网络深度、宽度和分辨率能够带来更好的效果。通过这一观察,我们提出了一种新的缩放方法:使用简单高效的复合系数统一缩放所有的维度,包括深度、宽度以及分辨率。我们证明这种方法在压缩MobileNets和ResNets网络是有效的。
  为了更进一步,我们使用神经架构搜索来设计新的基础结构,进行缩放以获得一系列模型,称为EffientNets,它比以前的ConvNets具有更高的准确性和效率。特别地,我们的EfficientNet-B7在ImageNet上实现了最先进的84.4%top-1 / 97.1%top-5精度,同时比现有最好的ConvNet小8.4倍,推理速度快6.1倍。我们的EfficientNets在CIFAR-100(91.7%),Flowers(98.8%)和其他3个传输学习数据集上也能很好地传输和实现最先进的精度,参数的数量级减少了一个数量级。

Figure1

简介

  缩放ConvNets被广泛地用来实现更高的准确率。比如,ResNet可以通过使用更多的层从18缩放到200,GPipe通过将基础结构缩放为原来的四倍实现了在ImageNet数据集top-1 84.3%的准确率。然而,网络缩放的方式不能被理解,并且没有一个确切的缩放方式。最常见的方式是网络深度或宽度的缩放。另一个比较常见的,但是最近很流行的方法是通过图片分辨率的缩放来缩放网络。在之前的工作中,缩放宽度、深度和分辨率的某一项是十分常见的。尽管可以任意缩放二维或三维,但任意缩放需要繁琐的手动调整,并且仍然经常产生次优的精度和效率。

### EfficientNet 简介与使用教程 EfficientNet 是一种基于卷积神经网络(CNN)的深度学习模型,其核心思想是通过复合缩放方法(compound scaling method)在模型的宽度、深度和分辨率之间找到最佳平衡点[^3]。这种方法使得 EfficientNet 在计算资源有限的情况下依然能够取得出色的性能表现。 #### 1. 安装与导入 为了使用 EfficientNet 模型,首先需要安装相关库。以 PyTorch 版本为例,可以通过以下命令安装 `efficientnet-pytorch` 库: ```bash pip install efficientnet-pytorch ``` 安装完成后,可以导入并实例化 EfficientNet 模型。例如加载预训练的 EfficientNet-B0 模型: ```python from efficientnet_pytorch import EfficientNet model = EfficientNet.from_pretrained('efficientnet-b0') ``` 上述代码中,`EfficientNet.from_pretrained` 方法会自动下载并加载预训练权重[^1]。 #### 2. 参数配置 EfficientNet 的参数配置通常包括以下几个方面: - **batch_size**: 训练批次大小,影响内存占用和收敛速度[^4]。 - **learning_rate**: 学习率,控制模型参数更新的速度。 - **epochs**: 训练轮数,决定模型训练的时间长度。 - **optimizer**: 优化器类型,如 Adam 或 SGD。 - **data_path**: 数据集路径,指定训练和验证数据的位置。 - **model_name**: 模型名称,例如 `efficientnet_b0` 到 `efficientnet_b7`[^4]。 - **output_dir**: 输出目录,用于保存训练结果和模型权重。 一个典型的配置文件示例如下: ```json { "batch_size": 32, "learning_rate": 0.001, "epochs": 100, "optimizer": "adam", "data_path": "path/to/dataset", "model_name": "efficientnet_b0", "output_dir": "path/to/output" } ``` #### 3. 使用教程 以下是使用 EfficientNet 进行训练和评估的基本流程: - **训练模型**: 在训练过程中,需要定义数据加载器、损失函数和优化器,并将这些组件与模型结合。例如: ```python import torch from torch.utils.data import DataLoader from torchvision import datasets, transforms # 数据预处理 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = datasets.ImageFolder(root="path/to/train", transform=transform) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) # 定义模型、损失函数和优化器 model = EfficientNet.from_pretrained('efficientnet-b0') criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练循环 for epoch in range(100): for images, labels in train_loader: outputs = model(images) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() ``` - **评估模型**: 在评估阶段,可以加载训练好的权重并进行预测。例如: ```python ckpt = 'path/to/your/trained_weights.pth' model.load_state_dict(torch.load(ckpt)) model.eval() test_dataset = datasets.ImageFolder(root="path/to/test", transform=transform) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print(f'Accuracy: {accuracy:.2f}%') ``` #### 4. 应用场景 EfficientNet 因其高效的计算能力和广泛的适用性,在多种实际场景中表现出色,包括但不限于: - 移动设备上的图像识别和分类任务。 - 边缘计算设备中的实时视频分析[^3]。 - 大型数据集的在线学习服务。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值