MeanShift算法的理解

本文介绍了一种基于颜色概率密度分布的目标跟踪算法——Meanshift。首先对跟踪目标建立加权直方图模型,随后在后续帧中搜索候选目标并建立模型。通过计算Bhattacharyy系数评估两者相似度,并利用梯度上升法调整候选位置,最终实现目标跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,在第一帧需要对要跟踪的目标进行建模。这里使用加了核的直方图法,对要跟踪的目标的颜色分布做一个概率密度分布函数。用来描述要跟踪目标的特征。

然后,在接下来的几帧中,以上一帧的目标所在的位置为中心,在此邻域内进行搜索。以f做为候选目标的中心坐标,在该坐标下,对候选目标同样进行概率密度分布的描述,也就是说描述候选目标的特征。

此时我们得到了两个模型,一个是要跟踪目标的模型,称为target,一个是候选跟踪目标的模型,称为candidate。如何判断当前候选目标所在的位置是不是真实目标所在的位置呢?这就要评价以下,target和candidate有多相似了。两者越相似,则候选目标是真实目标的可能性就越大。评价两者相似程度使用Bhattacharyy系数。

因为要求解的问题是在一个邻域内的,因此可以在上一个目标为中心的领域内,对该系数进行泰勒级数展开,估计其在领域内得到的最大值。求导后发现,要想最大化Bhattacharyy系数,需要最大化一个关于候选目标位置的概率密度分布函数。

为最大化这个概率密度分布函数,需要将y,沿着mean shift向量所在的方向进行运动。迭代若干此后,该概率密度分布函数会收敛到一个最大值,此时可以得到最大化的Bhattacharyy系数,从而可以认为,当前位置下所对应的候选目标,那就是我们所要跟踪的目标了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值