Elasticsearch搜索数据DSL语法(一)

目录

前言

一、搜索前的准备

二、搜索结构以及DSL语法

1、搜索请求的基本模块

 2、简单查询DSL

1、match_all查询

2、match查询



前言

    Elasticsearch可以作为数据库,但它最常用的也是最擅长的还是搜索引擎。本篇介绍elasticsearch搜索数据的DSL(Domain Specific Language)语法。部分内容总结摘抄自《Elasticsearch实战》,仅作笔记。另外,本篇文章基于es7.x,因此类型统一为_doc。


一、搜索前的准备

    为了方便后面执行DSL语句以及可视化索引信息,我们使用kibana和head工具。首先使用kibana执行下面的语句创建一个主分片数量为1且副本分片数量为0的索引。

PUT /index
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  }, 
    "mappings": {
      "properties": {
        "name": {
          "type": "text"
        },
        "age": {
          "type": "long"
        },
        "gender": {
          "type": "keyword"
        },
        "birthday":{
          "type": "date",
          "format": "yyyy-MM-dd"
        },
        "personalIntro":{
          "type": "text"
        }
      }
    }
}

    执行完之后在head插件中就可以新增了一个名为index的索引,点击查看索引信息如下,可以看到与我们创建的映射一致。

     然后向该索引中添加5条数据。

POST /index/_doc/
{
  "name":"charles hahaha",
  "age":18,
  "gender":"male",
  "birthday":"1991-10-22",
  "personalIntro":"I am a handsome boy."
}

POST /index/_doc/
{
  "name":"charles kakakakak",
  "age":8,
  "gender":"male",
  "birthday":"1991-10-22",
  "personalIntro":"Nice to meet you!"
}

POST /index/_doc/
{
  "name":"krystal hahahahahhahahh",
  "age":28,
  "gender":"female",
  "birthday":"1994-10-22",
  "personalIntro":"I am a handsome girl,my name is charles hahahahahahaaaaaa."
}

POST /index/_doc/
{
  "name":"charles wawawawawa",
  "age":18,
  "gender":"female",
  "birthday":"1991-10-22",
  "personalIntro":"I am a beautiful girl,my name is krystal hahahahahaha"
}

POST /index/_doc/
{
  "name":"krystal wawawawawa",
  "age":48,
  "gender":"female",
  "birthday":"1981-10-22",
  "personalIntro":"I am a beautiful girl,what is your name?"
}

    然后在head插件中查看数据已经插入成功,这里把数据放在这里以便后面验证查询结果。

### 回答1: Elasticsearch DSL语法种用于构建Elasticsearch查询的Python库。它提供了种简单而强大的方式来构建复杂的查询和聚合操作。DSL语法使用Python的面向对象语法来构建查询,使得代码易于阅读和维护。它支持各种查询类型,包括全文搜索、范围查询、过滤器、聚合等。DSL语法还提供了些方便的方法来处理查询结果,如分页、排序、高亮等。总之,Elasticsearch DSL语法个非常有用的工具,可以帮助开发人员更轻松地构建和执行Elasticsearch查询。 ### 回答2: Elasticsearch DSL个基于Python的模块,它允许用户以更加方便的方式与Elasticsearch交互。DSL提供了种更加简洁和可读的语法,减少了编写Elasticsearch查询的复杂性。DSL语法旨在尽可能地呈现Elasticsearch查询的结构。 DSL的主要语法包括以下几个方面: 1.索引:在DSL中,用户需要指定要查询的索引。例如,要查询名为“movies”的索引,用户应该使用以下语法:Index('movies')。 2.查询:设置检索的查询条件。在DSL中,用户可以使用各种查询类型来设置这些条件,例如term,match,range等。例如,要查询字段“title”等于“The Godfather”的文档,用户可以使用以下代码: from elasticsearch_dsl import Search from elasticsearch_dsl.query import Term s = Search().filter(Term(title='The Godfather')) 3.聚合:查询结果的聚合是DSL可以处理的另个重要方面。用户可以使用各种聚合类型来获得有关查询结果的统计信息,例如总数,平均值,最大值等。例如,要统计字段“rating”的平均值,用户可以使用以下代码: from elasticsearch_dsl import Search from elasticsearch_dsl.aggs import Avg s = Search().agg(Avg('avg_rating', field='rating')) 4.排序:DSL中的排序允许用户根据指定的字段对查询结果进行排序。用户可以使用“sort”方法来设置排序规则,如以下代码所示: from elasticsearch_dsl import Search s = Search().sort('rating') 总之,Elasticsearch DSL语法提供了更强大的、更方便的方式与Elasticsearch进行交互。无论是搜索、聚合还是排序,DSL都可以帮助用户更加简单地构建复杂的查询。 ### 回答3: Elasticsearch DSL(Domain-Specific Language)是 Elasticsearch Python 客户端库实现的种流畅的Python语法查询语句。Elasticsearch DSL 使Python开发人员能够以简单、易读的方式与 Elasticsearch 进行交互,更加方便地构建复杂的查询语句和聚合操作。下面我将从 dsl 查询语句的特点、基本语法和示例等方面进行详细说明。 Elasticsearch DSL查询语句的特点: 1.以Python方式编写查询语法,更加清晰易读; 2.类似于SQL语句的查询结构,更容易学习和使用; 3.高效的性能和精确的结果,提高了开发效率和用户体验; 4.可以轻松地与Python中的其他库进行集成,增加了开发的灵活性和可扩展性。 Elasticsearch DSL查询语句的基本语法: 1.创建查询: from elasticsearch_dsl import Search client = Elasticsearch() # 创建 Elasticsearch 客户端对象 search = Search(using=client) 2.匹配所有文档: search = Search(using=client, index="index_name").query("match_all") 3.匹配查询: search = Search(using=client, index="index_name").query("match", field="value") 4.范围查询: search = Search(using=client, index="index_name").query("range", field={"gte": 10, "lte":20}) 5.多个条件查询: search = Search(using=client, index="index_name").query("bool", must=[Q("match", title="python"), Q("match", content="elasticsearch")]) 6.结果排序和分页查询: search = Search(using=client, index="index_name").query("match", title="python").sort("-date").[0:10] Elasticsearch DSL查询语句示例: 1.查询内容为"python"的文章列表,并按发布时间倒序排序进行分页: s = Search().query("match", title="python").sort("-date").[0:10] response = s.execute() for hit in response: print(hit.title) 2.将通配符查询添加到筛选器列表中: search = Search().filter("wildcard", title="p*").query("match", body="python") response = search.execute() print("Total hits: ", response.hits.total.value) 3.使用子查询搜索不同版本的个索引: s = Search(index="my-index").query( "bool", must_not=[Q("match", title="python")], should=[Q("match", title="java"), Q("match", title="ruby")] )执行 response = s.execute() print(response.hits.total.value) 总结:Elasticsearch DSL提供了Python化的语法来方便用户进行 Elasticsearch 操作。通过简单的语句即可实现复杂的查询,提高了开发效率和用户体验,开发人员可以很快学会并使用 Elasticsearch DSL
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值