将mysql中的数据导入到hdfs,spark程序实现

本博客介绍了一个使用Apache Spark从MySQL数据库导入数据,并将数据转换为CSV格式保存到HDFS的具体实现过程。通过SparkSession建立与数据库的连接,设置必要的参数如URL、用户名和密码,然后加载数据并指定输出路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

程序为:

import org.apache.spark.sql.SparkSession

object import_data {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession .builder()
    			 .appName("MysqlDemo") 
    			 .master("local").getOrCreate()
    val jdbcDF = spark.read.format("jdbc")
    			  .option("delimiter", ",")
    			  .option("heard", true)
    			  .option("url", "jdbc:mysql://ip:xxxx/test?useUnicode=true&characterEncoding=utf-8")
    			  .option("dbtable", "temp")
    			  .option("user", "root").option("password", "123").load()
    val res=jdbcDF.write.format("csv").option("delimiter", ",")
    		 .option("heard", true).save("hdfs://ip:xxxx/a.txt")
  }
}
HDFSHadoop分布式文件系统)导入数据MySQL的heat_map表通常涉及两个步骤:首先,你需要使用Hadoop MapReduce或Spark等工具读取HDFS上的数据,然后使用Sqoop或其他SQL工具将数据加载到MySQL中。这里是一个基本的流程: 1. 使用Hadoop/Spark读取HDFS数据: - 使用Hadoop的`hadoop fs -get`命令将HDFS中的文件下载到本地文件系统,如果数据是以文本文件(如CSV或JSON)形式存储,可以直接处理。 - 或者,如果你的数据适合MapReduce或Spark处理,你可以编写一个Mapper或Spark DataFrame作业来解析和预处理HDFS中的数据。 2. 使用Sqoop将数据导入MySQL: - 首先,确保你安装了Sqoop,并且已经配置了它与MySQL的连接。 - 创建一个Sqoop命令,类似于: ``` sqoop import \ --connect "jdbc:mysql://localhost:3306/taxi?useSSL=false" \ // MySQL连接信息 --username root \ --password 123456 \ --table heat_map \ // 你要插入的表 --target-dir /path/to/local/file/ // HDFS文件的本地路径 --as-avro-datafile // 如果数据格式是Avro,需要此选项 --incremental append // 如果你想增量导入,使用append模式 ``` - 确保目标表(heat_map)存在并且结构匹配输入的数据,如果有不一致,可能需要修改导入脚本或在MySQL中创建相应的表结构。 3. 执行导入: - 运行上述Sqoop命令,如果一切配置正确,数据就会被导入到MySQL的heat_map表中。 注意:在这个过程中,可能需要考虑数据格式转换、清洗、权限设置以及性能优化等问题。如果遇到问题,比如大小写敏感性、字段映射等,需要调整Sqoop的参数或编写自定义的Mapper/Loader。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值