INVALID_ARGUMENT: You must feed a value for placeholder tensor ‘inputs‘ with dtype float and shape

该代码段展示了一个使用Keras构建的卷积神经网络模型,包括Conv2D、MaxPooling2D和Dropout层。模型加载预训练权重后尝试保存为TensorFlow格式,但遇到了一个错误,指出必须为inputsplaceholder提供值。这个问题涉及到在保存模型时模型输入的feeding。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import MaxPooling2D
import tensorflow as tf
model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
model.load_weights('model.h5')
model.save('tfmodel', save_format='tf')

keras模型转tf保存的时候报错

INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,22,22,64]
         [[{{node inputs}}]]

没有向inputs这个Placeholder节点中传值,向此节点中传值即可
尝试模型输入input传值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值