cross entropy loss函数优点

本文探讨了交叉熵在机器学习分类任务中的优势,包括其衡量细微差异的能力及作为凸优化函数便于求解的特点。文章对比了均方误差(MSE)在分类初期的局限性,并介绍了交叉熵计算的一般流程,特别指出其在one-hot编码下的计算方式及对focal loss的理解帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1交叉熵的优点

  1. 能衡量细微的差异。
  2. 凸优化函数,便于利用梯度下降方法找到最优解。
  3. mse在分类初始阶段loss很小,不利于训练,详细见:https://blog.csdn.net/u014313009/article/details/51043064
  4. 回归的时候一般可能用mse

2交叉熵的计算

计算的话是onehot形式然后计算的,所以每一位都可以利用二进制交叉熵来算的,这样对于focal loss理解的话就更方便了。
在这里插入图片描述
在这里插入图片描述
参考:
http://jackon.me/posts/why-use-cross-entropy-error-for-loss-function/
https://blog.csdn.net/xg123321123/article/details/80781611

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值