opencv-阈值操作

阈值分割5种方法
寻找阈值2种方法

double cv::threshold    (InputArray     src,
    OutputArray     dst,
    double  thresh,
    double  maxval,
    int     type 
)   
参数含义
src输入,要求是单通道图像
thresh门限值
maxval超过门限的像素被赋予的新值
type处理算法类别

type的取值

类型含义
THRESH_BINARY超过thresh的像素被设为maxval, 其他被设为0
THRESH_BINARY_INV相反
THRESH_TRUNC超过thresh的像素被设为maxval, 其他不变
THRESH_TOZERO超过thresh的像素不变, 其他设为0
THRESH_TOZERO_INV相反
THRESH_OTSUflag, use Otsu algorithm to choose the optimal threshold value
THRESH_TRIANGLEflag, use Triangle algorithm to choose the optimal threshold value

THRESH_OTSU和THRESH_TRIANGLE和前面的type可以组合使用,好处是不用自己指定thresh值,系统会进行计算并且作为返回值返回。
THRESH_OTSU文档上说如果图像黑白分明,就可以用这个。

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
Mat src, gray_src, dst;
int threshold_value = 127;
int threshold_max = 255;
int type_value = 2;
int type_max = 4;
const char* output_title = "binary image";
void Threshold_Demo(int, void*);
int main(int argc, char** argv) {
	src = imread("C:/Users/Luyubo/Pictures/lena.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	namedWindow(output_title, CV_WINDOW_AUTOSIZE);
	imshow("input image", src);

	createTrackbar("Threshold Value:", output_title, &threshold_value, threshold_max, Threshold_Demo);
	createTrackbar("Type Value:", output_title, &type_value, type_max, Threshold_Demo);
	Threshold_Demo(0, 0);

	waitKey(0);
	return 0;
}

void Threshold_Demo(int, void*) {
	cvtColor(src, gray_src, CV_BGR2GRAY);
	threshold(gray_src, dst, 0, 255, THRESH_TRIANGLE | type_value);//自动计算阈值,不可调节阈值,可以调节阈值分割类型。
	//threshold(gray_src, dst, threshold_value, threshold_max, type_value);可以调节阈值,可以调节阈值分割类型。
	imshow(output_title, dst);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值