tf.keras.losses.SparseCategoricalCrossentropy详解

本文详细介绍了tf.keras.losses.SparseCategoricalCrossentropy的作用和示例。该损失函数用于计算估计值与标签的交叉熵,常用于多分类问题。最大似然估计通过最小化交叉熵来优化模型。文章还讨论了从logits还是概率分布计算损失的选项,以及损失的减少方法和权重分配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

tf.keras.losses.SparseCategoricalCrossentropy的作用

tf.keras.losses.SparseCategoricalCrossentropy的示例


tf.keras.losses.SparseCategoricalCrossentropy的作用

计算估计值和标签的交叉熵损失函数值。

交叉熵,描述两个分布之间的差异,比如估计的概率分布和观测到的概率分布之间的差异。最小化交叉熵等价于最大似然估计。

最大似然估计(极大似然估计),观测到某种事件发生的概率,估计系统参数为什么值的时候,最可能出现这种观测结果。

概率值,已知系统参数的前提下,某种事件发生的概率。

似然估计,观测到某种事件发生的概率,估计系统的参数。

假设有一个分类器\theta,将输入分成A,B,C三类。分为A的概率P_{A}为0.3,分为B的概率P_{B}为0.5,分为C的概率P_{C}为0.2。现在有10个观测数据x,4个A,3个B,  3个C。出现这组观测结果的概率是什

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

️Carrie爱学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值