图规划算法对比分析

 关注同名微信公众号“混沌无形”,阅读更多有趣好文!

原文链接机器人图规划算法研究现状简述​​​​​​​(包含原文PDF百度云下载链接)

 

图搜索算法的基本原理就是计算所有途径节点的路径的成本值,并选择成本值最低的一条作为结果。 

  • 主要优点:实时性较好,能够快速全局最优(次优)路径,能适应低维空间的动静态环境,分辨率完备(相较于基于采样的算法,图搜索算法接近于遍历算法)。 

  • 主要缺点:生成的路径连续性较差,并不适合直接应用于机器人运动,但图搜索算法在高维空间搜索性能不可靠,原因在于在二维空间中,图搜索算法是基于当前点向四周扩展,需要遍历计算四周扩展节点的累加成本,而在三维或更高维空间中,其四周扩展节点数量将迅速增加,这会增加每一次节点扩展时的计算成本,因此在高维空间的搜索性能会严重下降。

BUG类算法的基本原理就是遇到障碍物就沿着障碍物边缘运动,所以实际生成的路径曲线与障碍物边缘曲线形态有着密切关系,可以近似认为是障碍物边界向外缩放后的曲线。 

  • 主要优点:模型简洁,实时性好,由于主要策略是沿着障碍物边缘运动,所以有着较高的计算效率。

  • 主要缺点:依赖于全局定位,抗干扰能力较弱,尤其是在复杂迷宫场景下,BUG算法要找出一条效率高的路径是非常有挑战的。

势场力类算法的基本原理就是构造合适的势场,通过合力驱动机器人运动,当场景中存在较多动态障碍物时,机器人的运动行为也将受到较大的影响。 

  • 主要优点:模型简洁,安全性极佳,实时性好,路径较平滑。由于计算模型较为简单,因此计算效率较高,能够保证实时性,同时机器人距离障碍物越近,则受到的排斥力越大,保证了安全性。 

  • 主要缺点:易受到障碍物冲击,存在振荡,当存在多个动态障碍物时,可能会迫使机器人朝着目标反方向运动,而在经过某些特殊场景时,机器人运动轨迹可能会产生震荡,并陷入局部最小值而停止运动。

总体而言,图规划算法已经能够在诸多场景下的规划生成一条无碰撞路径,比如A*算法就被作为ROS navigation stack中global planner的默认算法,随着诸多学者的改进升级,图规划算法的实时性和动态适应性逐渐提升,但多数算法仍存在路径质量差、未考虑动力学约束等问题,这些问题也导致相关算法不能直接应用于实际机器人运动场景。

 精彩的理论论证过程见原文链接(含全文下载链接)

由于网页排版效果一般,所以笔者按照期刊论文版式为小伙伴们整理了原文PDF,方便收藏和回味。

原文链接:(包含原文PDF百度云下载链接)
CSDN下载链接:机器人图规划算法研究现状简述PDF

如果喜欢的话,可以关注同名微信公众号“混沌无形”,阅读更多有趣好文!

讲述机器人运动规划原理的经典书籍。 《规划算法》目录: 第Ⅰ部分 介绍性的资料  第1章 绪论   1.1 从规划(的过程)到规划(的结果)   1.2 实例与应用   1.3 规划的基本组成   1.4 算法规划器与规划    1.4.1 算法    1.4.2 规划器    1.4.3 规划   1.5 本书的组织安排  第2章 离散规划   2.1 离散可行规划简介    2.1.1 问题表述    2.1.2 离散规划的实例    2.2 可行规划的搜索    2.2.1 一般前向搜索    2.2.2 特殊前向搜索    2.2.3 其他搜索方案    2.2.4 搜索方法的统一描述   2.3 离散最优规划    2.3.1 最优定长规划    2.3.2 不指定长度的最优规划    2.3.3 再论Dijkstra算法   2.4 用逻辑来表示离散规划    2.4.1 类似STRIPS的表示    2.4.2 转换到状态空间表示   2.5 基于逻辑的规划方法    2.5.1 部分规划空间中的搜索    2.5.2 建立规划    2.5.3 满足性规划   进一步阅读   习题   实现 第Ⅱ部分 运动规划  第3章 几何表示与变换   3.1 几何建模    3.1.1 多边形与多面体模型    3.1.2 半代数模型    3.1.3 其他模型   3.2 刚体变换    3.2.1 一般概念    3.2.2 二维变换    3.2.3 三维变换   3.3 物体运动链的变换    3.3.1 二维运动链    3.3.2 三维运动链   3.4 运动树的变换   3.5 非刚体的变换   进一步阅读   习题   实现  第4章 位形空间   4.1 拓扑的基本概念    4.1.1 拓扑空间    4.1.2 流形    4.1.3 路径与连通   4.2 位形空间    4.2.1 二维刚体:SE(2)    4.2.2 三维刚体:SE(3)    4.2.3 物体的链与树   4.3 位形空间障碍物    4.3.1 基本运动规划问题    4.3.2 显式建模Cobs:加:平移情况    4.3.3 显式建模Cobs:一般情形   4.4 闭运动链    4.4.1 数学概念    4.4.2 R2上的运动链    4.4.3 定义一般连杆组的簇   进一步阅读   习题   实现  第5章 基于采样的运动规划  第6章 组合运动规划  第7章 基本运动规划的扩展  第8章 反馈运动规划 第Ⅲ部分 决策论规划  第9章 基本永生理论  第10章 序贯决策理论  第11章 传感器与信息空间  第12章 存在感测不确定性条件下的规则 第Ⅳ部分 微分约束条件下的规划   第13章 微分模型  第14章 微分约束条件下基于采样的规划  第15章 系统理论与分析技术
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

混沌无形

谢谢老板

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值