关注同名微信公众号“混沌无形”,阅读更多有趣好文!
原文链接:机器人图规划算法研究现状简述(包含原文PDF百度云下载链接)
![]()
图搜索算法的基本原理就是计算所有途径节点的路径的成本值,并选择成本值最低的一条作为结果。
-
主要优点:实时性较好,能够快速全局最优(次优)路径,能适应低维空间的动静态环境,分辨率完备(相较于基于采样的算法,图搜索算法接近于遍历算法)。
-
主要缺点:生成的路径连续性较差,并不适合直接应用于机器人运动,但图搜索算法在高维空间搜索性能不可靠,原因在于在二维空间中,图搜索算法是基于当前点向四周扩展,需要遍历计算四周扩展节点的累加成本,而在三维或更高维空间中,其四周扩展节点数量将迅速增加,这会增加每一次节点扩展时的计算成本,因此在高维空间的搜索性能会严重下降。
BUG类算法的基本原理就是遇到障碍物就沿着障碍物边缘运动,所以实际生成的路径曲线与障碍物边缘曲线形态有着密切关系,可以近似认为是障碍物边界向外缩放后的曲线。
-
主要优点:模型简洁,实时性好,由于主要策略是沿着障碍物边缘运动,所以有着较高的计算效率。
-
主要缺点:依赖于全局定位,抗干扰能力较弱,尤其是在复杂迷宫场景下,BUG算法要找出一条效率高的路径是非常有挑战的。
势场力类算法的基本原理就是构造合适的势场,通过合力驱动机器人运动,当场景中存在较多动态障碍物时,机器人的运动行为也将受到较大的影响。
-
主要优点:模型简洁,安全性极佳,实时性好,路径较平滑。由于计算模型较为简单,因此计算效率较高,能够保证实时性,同时机器人距离障碍物越近,则受到的排斥力越大,保证了安全性。
-
主要缺点:易受到障碍物冲击,存在振荡,当存在多个动态障碍物时,可能会迫使机器人朝着目标反方向运动,而在经过某些特殊场景时,机器人运动轨迹可能会产生震荡,并陷入局部最小值而停止运动。
总体而言,图规划算法已经能够在诸多场景下的规划生成一条无碰撞路径,比如A*算法就被作为ROS navigation stack中global planner的默认算法,随着诸多学者的改进升级,图规划算法的实时性和动态适应性逐渐提升,但多数算法仍存在路径质量差、未考虑动力学约束等问题,这些问题也导致相关算法不能直接应用于实际机器人运动场景。
精彩的理论论证过程见原文链接(含全文下载链接)
由于网页排版效果一般,所以笔者按照期刊论文版式为小伙伴们整理了原文PDF,方便收藏和回味。
原文链接:(包含原文PDF百度云下载链接)
CSDN下载链接:机器人图规划算法研究现状简述PDF如果喜欢的话,可以关注同名微信公众号“混沌无形”,阅读更多有趣好文!