Python用K-Means均值聚类、LRFMC模型对航空公司客户数据价值可视化分析指标应用

全文链接:https://tecdat.cn/?p=38708

原文出处:拓端数据部落公众号

分析师:Yuling Fang

信息时代的来临使得企业营销焦点从产品中心转向客户中心,客户关系管理成为企业的核心问题。客户关系管理的关键是客户分群,通过客户分群,区分无价值客户和高价值客户,同时更好的了解客户的特征,使企业能够针对不同价值客户指定优化的个性化服务方案,实现精细化运营。客户分群是关键节点。

任务/目标

根据航空公司观测窗口内的客户社会信息、乘机信息和积分信息对客群进行价值分类,为业务提供运营策划参考。

数据源准备

选取宽度为两年的分析观测窗口,抽取观测窗口内有乘机记录的所有客户的详细数据,共62988行。对原始数据进行探索和数据清洗。

缺失值处理。通过数据探索分析,发现genderagesum分别有3420689个缺失值,由于变更比总记录数较少,故直接删除处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值