在这里,我们只说说一元的情况,直白的说就是:y=ax+b。也就是只关注一个变量和函数值的关系。
有这样一个场合:在xy坐标系中有一群离散的点,试图通过这些点的分布来找到x、y之间的联系,也就是找到一条和所有点都最接近的直线,并且把这条直线表示出来。
就想搓绳索一样,把松散的纤维拧成一条线,散点拟合成线,或者说这些点回归到线上。也就是说,线性拟合和线性回归是一个意思。
常用的拟合方法是最小二乘法:
y=bx+a
r表示拟合的系数,范围是[-1,1],值越大,表示误差越小,拟合的越好。