2021-07-28百度Paddle直播回顾

本文详细探讨了数据集获取途径,从公开数据集到自定义标注,重点讲解了数据清洗、标注、预处理和增强技术,包括COCO和VOC格式转换,以及模型训练中的关键概念如IOU、TP/FP/FN/TN和map。通过实例演示如何使用Paddle.vision.transform和VisualDL进行可视化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据集获取

1. 公开数据集

     AiStudio、Kaggle、天池、DataFountain、科大讯飞、COCO数据集、VOC数据集

2. 完整流程

2.1 数据处理流程

  1. 图片数据获取
  2. 图片数据清洗
  3. 图片数据标注
  4. 图片数据预处理Data Processing:标准化(中心化、归一化)
    • 中心化:加快收敛速度
    • 归一化:提高收敛效率
  5. 图片数据准备(训练集、验证集、测试集)
  6. 图片数据增强Data Augmentation(训练阶段)
    • paddle.vision.transform

2.2 纯数据处理流程(结构化赛题常用、这里不再赘述)

二、数据处理

1.数据集格式转换

COCO数据集Json格式解析、COCO格式转VOC格式

2. 自定义数据集处理

常见标注工具(labelimg、labelme、PPOCRLabel)

三、数据处理方法

1. 图片的本质

位图:由像素点定义一放大会糊、文件体积较大、色彩表现丰富逼 真

矢量图:超矢量定义、放太不模糊、文件体积较小、表现力差

2. 数据增强

增加数据量
减少过拟合

四、模型的训练与评估

1. 对比实验

2. map介绍:

2.1 IOU

在这里插入图片描述

2.2 TP、FP、FN、TN

常见的评 判方式,第一位的T,F代表正确或者错误。第二位的P和N代表判断的正确或者错误

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

map为PR曲线下的面积

五、模型预测推理

利用Vistual DL进行可视化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

involute__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值