聚类算法的性能评估是什么?
聚类是无监督学习的一种常用技术,用于将相似的数据点分组在一起。然而在实施聚类算法后,一个关键的问题便是如何评估其性能或质量。由于聚类是无监督的,因此评估其性能相对更为复杂。本文将探讨多种用于评估聚类性能的指标,包括肘部法则、轮廓系数、Davies–Bouldin指数、Calinski-Harabasz指数、Fowlkes-Mallows指数、Rand指数、Jaccard系数和调整兰德指数。这些指标各有其应用场景、优缺点和性能开销,适用于不同类型的聚类算法和数据集。
文章目录
不同的评估方法
肘部法则(Elbow Method)
肘部法则是一种非常实用的方法,用于确定最优的聚类数量。这种方法的核心思想是:随着聚类数 ( k ) (k) (k)的增加,样本划分的准确度