Mr数据杨
知乎签约作者,搞Python大数据的日语文科生。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pandas进行MongoDB数据库CRUD
通过这篇教程,展示了如何使用Pandas结合MongoDB进行CRUD操作。在数据处理的过程中,MongoDB的文档存储结构为复杂数据处理提供了灵活性,而Pandas则为数据分析与操作提供了强大支持。掌握MongoDB的CRUD操作,可以灵活应用于多种数据密集型场景,如电商、物流、社交平台等。原创 2025-05-16 08:23:33 · 1041 阅读 · 0 评论 -
使用skimage进行图片读取与存储
通过使用skimage库,可以轻松处理图片数据。本文介绍了如何使用skimage读取、处理并保存图片数据。通过这些操作,读者可以掌握图片的基础处理技能,理解如何在工作中高效地使用skimage完成图片的操作与转换。Skimage是一个功能强大的图像处理库,尤其适合用于科学研究和数据分析领域。学习并掌握它,将极大地提升开发效率,帮助解决复杂的图像处理问题。原创 2025-05-22 08:00:00 · 947 阅读 · 0 评论 -
time进行日期、时间操作
实际应用中,经常需要处理非标准格式的时间字符串。例如,在一些系统中,时间可能会以特定格式输出,这时可以通过自定义格式符进行解析和格式化。原创 2025-05-18 09:34:29 · 831 阅读 · 0 评论 -
itertools进行排列组合
itertools模块提供了丰富的迭代工具,尤其在排列组合问题上表现出色。无论是在数据分析、任务调度,还是参数组合生成等场景中,都能通过这些工具简化流程、提升效率。通过学习和使用这些函数,能轻松应对实际编程中的复杂组合问题,并在需要处理大量数据时优化计算性能。原创 2025-05-17 07:50:59 · 881 阅读 · 0 评论 -
随机数据的生成和使用
Python是一门功能强大且易于学习的编程语言,广泛应用于数据分析、人工智能、科学计算等多个领域。在数据科学领域,生成和使用随机数据是一个非常常见的需求。无论是为了模拟实验、测试算法,还是生成样本数据,随机数据的生成与操作都是编程过程中不可或缺的一部分。在这篇教程中,主要介绍如何使用Python生成和使用随机数据,涵盖基本操作和实际应用场景。通过对这些技术的学习,掌握如何在实际工作中高效处理随机数据,将为后续的编程学习奠定坚实的基础。原创 2025-05-21 08:06:36 · 932 阅读 · 0 评论 -
Pandas进行构建crosstab交叉表
Pandas库的crosstab函数是进行数据汇总与分组分析的利器。它不仅可以帮助快速生成频数表,还能够结合数值列进行复杂的聚合操作。通过掌握crosstab的基本用法和聚合功能,分析师能够更加高效地处理多维数据,并从中挖掘有价值的洞察。在实际工作中,crosstab能够很好地辅助决策,尤其在市场营销和销售分析等领域,具有广泛的应用价值。原创 2025-05-16 08:23:23 · 743 阅读 · 0 评论 -
dask数据并行计算
Dask 是一个功能强大的并行计算工具,特别适用于处理大规模数据集和复杂的计算任务。通过 Dask Arrays、Dask DataFrame 和 Dask Delayed,可以高效地执行数值计算、数据分析和自定义的并行任务。在数据驱动的工作中,Dask 提供了灵活且易于扩展的并行计算解决方案,能够帮助优化计算资源的使用,提升工作效率。Dask 的简单易用性以及与现有 Python 工具的无缝集成,使其成为学习并行计算和提升数据处理能力的理想选择。原创 2025-05-21 08:06:43 · 1042 阅读 · 0 评论 -
Pandas进行astype数据类型转换
通过本教程的讲解,可以清楚地了解到 Pandas 中astype函数的重要性。它为数据处理中的数据类型转换提供了高效且灵活的解决方案。在实际工作中,处理不一致的数据类型是常见的任务,尤其是在数据预处理中。astype不仅可以帮助完成简单的类型转换,还可以处理异常数据,确保数据的一致性和准确性。通过结合具体的应用场景,例如财务数据分析,进一步展示了astype的实际价值。在数据科学的世界里,灵活掌握这些基础工具将极大提高工作效率,帮助更快速地完成复杂的数据处理任务。原创 2025-05-17 07:50:43 · 801 阅读 · 0 评论 -
datetime进行日期、时间操作
datetime模块为 Python 提供了强大的日期时间处理能力。通过本文的学习,掌握了从获取当前时间、格式化时间、解析时间字符串,到时间加减、时间差计算以及跨时区处理等操作。这些功能广泛应用于日常生活和工作中的时间管理、任务调度和跨时区协作中。对于处理各种场景下的时间数据,datetime模块是不可或缺的工具。掌握这些基本和高级用法后,可以应对大多数与时间处理相关的问题,在编写程序时更加得心应手。原创 2025-05-18 09:34:36 · 830 阅读 · 0 评论 -
Pandas进行MySQL数据库CRUD
通过这篇教程,展示了如何使用Pandas与MySQL结合来进行基本的CRUD操作。在数据分析与处理的过程中,数据库操作是必不可少的环节,而通过Pandas,能够简化这些操作,使得数据的增删改查变得更加直观高效。通过学习和应用Pandas与MySQL的CRUD操作,可以处理日常工作中的各类数据任务,无论是从数据库中提取数据,还是更新与删除数据,都能通过简单的几行代码实现。这为自学编程的学习者提供了强大的工具,帮助其在实际项目中快速应用。原创 2025-05-16 08:23:29 · 704 阅读 · 0 评论 -
使用OpenCV进行图片读取与存储
在图像处理和计算机视觉的领域中,OpenCV(Open Source Computer Vision Library)是一个非常流行的开源库。它提供了强大的工具,用于对图像进行处理、分析和操作。无论是简单的图片读取与保存,还是复杂的图像处理算法,OpenCV都能提供丰富的支持。在机器学习和人工智能等多个应用领域,OpenCV也被广泛使用,特别是在实时图像处理和视频流处理方面。本教程将通过简单易懂的代码示例,详细介绍如何使用OpenCV进行图片的读取、基本操作(如图片缩放、旋转、裁剪等)以及格式转换和保存。教原创 2025-05-23 08:00:00 · 1397 阅读 · 0 评论 -
missingno数据缺失值可视化
数据缺失是数据分析中的常见问题,而missingno库通过其多种可视化方式,能够有效地帮助识别和分析缺失值的模式,为后续数据处理提供了决策依据。掌握这些可视化工具,能够显著提升数据清洗的效率,为高质量的数据分析奠定坚实的基础。在实际工作中,建议根据不同数据集的特点,合理使用missingno提供的不同可视化工具,确保数据清洗过程的完整性和准确性。原创 2025-05-22 08:00:00 · 1768 阅读 · 0 评论 -
使用PIL (Pillow)进行图片读取与存储
通过Pillow,图片的读取、处理和保存变得非常简单且高效。在本教程中,涵盖了图片的基本操作,如读取图片、缩放、旋转、裁剪、格式转换等。同时结合了实际应用的场景,帮助理解这些功能在实际项目中的使用方法。学习并掌握Pillow库的操作后,Python编程者可以轻松应对图片处理的各种需求,将图片处理与数据分析、机器学习、网页设计等领域结合起来,从而极大地提升工作效率。原创 2025-05-23 08:00:00 · 1072 阅读 · 0 评论 -
图像数据管理DISK、LMDB和HDF5的存储与读取
通过对比三种存储方式,DISK、LMDB 和 HDF5 在不同场景下各有优劣。DISK 适合小规模的数据存储与读取,但随着数据量的增加,其性能会显著下降。LMDB 和 HDF5 则在处理大规模数据时表现出色,尤其是 LMDB,在读取性能上具备明显的优势。而 HDF5 则在多维数据集的存储和操作上展现了较高的灵活性。因此,在实际应用中,用户可以根据数据量和操作需求,选择合适的存储方式来实现高效的数据管理。此外,通过并行化的处理方式,还可以进一步提升数据读写的效率,满足更加复杂的应用需求。原创 2025-05-21 08:06:30 · 764 阅读 · 0 评论 -
datetime和time格式化参数
通过对时间、日期以及综合性符号的格式化参数的掌握,开发者可以灵活应对不同场景下的时间处理需求。从日志记录到跨时区应用,Python 提供的strftime和strptime函数能够帮助开发者轻松自定义时间和日期的输出形式。在实际应用中,理解这些符号并合理应用是构建可靠、全球化系统的重要基础。无论是用于自动化脚本、数据分析还是用户界面展示,灵活的时间处理能力都是编程中的重要技能。原创 2025-05-18 09:34:22 · 819 阅读 · 0 评论 -
Pandas进行MongDB重复数据去重
通过本文的学习,了解了如何使用MongoDB命令行和Python结合Pandas进行数据去重操作。MongoDB的aggregate操作提供了强大的分组和过滤功能,可以直接在数据库层面进行去重。而Python与Pandas的结合,则为处理复杂的数据操作提供了灵活性,特别适合需要对数据进行进一步分析的场景。无论是在数据分析、数据库管理,还是在开发过程中,数据去重都是确保数据准确性和系统性能的关键步骤。掌握这些技巧,将极大提高数据管理的效率。原创 2025-05-17 07:50:51 · 837 阅读 · 0 评论 -
Pandas进行周期与时间戳转换
在时间序列数据分析中,周期与时间戳之间的转换是非常常见且重要的操作。通过pandas提供的和方法,能够轻松实现从时间戳到周期,或者从周期到时间戳的转换。这些方法可以帮助分析人员在不同时间尺度上汇总和转换数据,以满足多层次的时间分析需求。无论是在销售数据、财务数据还是其他领域,合理利用这些时间序列转换技巧可以让数据分析更加高效、灵活。原创 2025-05-11 07:37:42 · 1009 阅读 · 0 评论 -
Pandas进行pivot_table数据透视
Pandas中的功能为数据透视和分析提供了极大的灵活性。无论是基础的数据汇总,还是多维度的高级分析,都能在数据处理中发挥重要作用。在实际应用中,它广泛用于销售分析、财务报表等领域,通过快速整理和汇总大数据集,帮助决策者作出明智的判断。掌握这一功能,将大大提高数据处理和分析的效率,使复杂数据的呈现更加直观明了。原创 2025-05-14 08:29:42 · 715 阅读 · 0 评论 -
Pandas进行drop_duplicates数据去重
Pandas 是 Python 中最常用的数据分析库之一,提供了强大的数据操作功能。其中,是一个非常实用的函数,广泛应用于数据去重的场景,特别是在处理数据分析、数据清理和数据预处理的过程中。去重是清理数据的一项基础任务,它能有效减少冗余信息,保证数据的唯一性和准确性。本文将详细讲解如何使用 Pandas 的函数,帮助读者掌握其基本用法和在实际场景中的应用。本文适合具备一定 Python 基础的自学编程者,目标是通过实战操作理解和掌握的不同用法及其背后的逻辑,提升数据处理的能力。原创 2025-05-15 07:28:24 · 609 阅读 · 0 评论 -
Pandas进行duplicated数据去重标记
在数据分析与处理的过程中,数据去重是保证数据质量和分析结果准确性的关键步骤。Pandas中的函数提供了高效且灵活的重复数据检测方法,可以根据不同的需求指定特定列进行判断,并允许保留或删除重复项。无论是简单的数据集还是复杂的大规模数据集,通过合理使用,可以快速识别出冗余数据,确保数据的唯一性和可靠性。在实际应用中,这个函数能够极大地简化数据清理工作,提升数据处理的效率,为后续的分析提供可靠的数据基础。结合实际场景,原创 2025-05-15 07:28:17 · 651 阅读 · 0 评论 -
Pandas进行时间格式化与提取
掌握时间格式化和提取的技能不仅能够提高代码的规范性,还能大幅提升开发效率。在实际工作中,无论是日志记录、报表生成,还是项目管理和商业分析,合理的时间处理都能为系统带来清晰的结构与高效的运作。通过strftime()和方法的灵活运用,开发者能够轻松应对各种时间数据的格式化和提取需求,从而更加从容地处理与时间相关的编程任务。原创 2025-05-14 08:29:36 · 919 阅读 · 0 评论 -
Pandas进行json_normalize多层嵌套Json数据展平
Pandas的是处理复杂嵌套JSON数据的利器,特别适合用于将API返回的多层嵌套结构转化为平面结构,方便进一步分析。通过合理运用中的各种参数,可以灵活处理多层嵌套的字段,同时在展平过程中可以结合Pandas的其他方法处理缺失值和异常数据。无论是在数据分析还是数据科学的工作流程中,这项技能都能显著提高数据处理的效率和准确性。通过本文的学习,相信能够更好地理解如何使用展平嵌套的JSON数据,并将其应用到实际项目中,处理复杂的数据结构不再是难题。原创 2025-05-11 07:37:35 · 813 阅读 · 0 评论 -
Json数据利用Pandas进行数据展平
通过本文的学习,掌握了使用Python内置库和Pandas的函数展平多层嵌套JSON数据的技巧,并结合实际案例展示了如何进行数据清洗与分析。处理复杂数据格式不再是难题,这些技能能有效提升数据处理效率,为日常工作中的数据分析提供支持。原创 2025-05-15 07:28:12 · 583 阅读 · 0 评论 -
Pandas进行stack数据堆叠
本教程展示了如何使用 Pandas 中的stack()方法进行数据堆叠,及其在多层索引和实际应用中的使用场景。掌握stack()和unstack()操作后,能够灵活地在不同的数据格式之间进行转换,从而为数据的分析和可视化提供便利。在数据处理任务中,合理利用这些方法可以极大提高工作效率,并简化数据的预处理过程。原创 2025-05-14 08:29:49 · 549 阅读 · 0 评论 -
Pandas进行cut、qcut数据划分
Pandas中的cut和qcut函数为数据划分提供了灵活、强大的工具。cut适合用于基于固定的区间或阈值进行数据分组,而qcut则适用于按比例或分位数进行划分。理解它们的区别和应用场景,有助于在实际工作中灵活应对各种数据划分需求。这些工具在日常的分析任务中非常有用,无论是市场细分、绩效评估,还是风险管理,都能提供有效的支持。通过灵活运用这些函数,可以大大提高数据处理的效率和准确性。原创 2025-04-08 17:33:58 · 138 阅读 · 0 评论 -
Pandas进行replace数据替换
通过本文的介绍,可以看到 Pandas 中的replace()方法为数据替换提供了多种灵活的方式,无论是处理异常值、标准化类别数据,还是进行缺失值的处理,replace()都能够简化这些操作。在实际应用中,掌握并灵活使用该方法,有助于提升数据清洗和预处理的效率,从而为后续的数据分析和建模打下坚实的基础。原创 2025-04-08 17:33:49 · 145 阅读 · 0 评论 -
Pandas进行Groupby数据聚合
在Pandas的groupby操作中,除了可以使用内置的聚合函数(如summean等),还可以通过传递自定义函数,实现更加灵活的聚合需求。自定义聚合函数为数据分析带来了极大的灵活性,允许用户根据特定的业务逻辑或分析需求对数据进行定制化处理。使用自定义聚合函数,可以针对每个分组进行更加细化的计算,比如对每个组执行复杂的统计分析或特定的业务计算流程。通过结合apply()agg()等方法,用户可以在分组操作中实现比内置函数更复杂、更个性化的数据处理逻辑。原创 2024-12-17 14:45:51 · 106 阅读 · 0 评论 -
Pandas进行SQL文件读写
本教程通过多个实例详细讲解了如何利用Pandas的read_sql()和to_sql()函数与SQL数据库交互,涵盖了从SQLite、MySQL、PostgreSQL等常见数据库中读取数据,以及将数据写回数据库的操作。通过这两个函数,用户可以轻松实现数据库的高效管理和数据分析自动化。利用Pandas与SQL数据库的交互,数据分析师能够更加灵活地进行数据处理工作,将大型数据库中的数据筛选、处理、清洗,并将处理后的结果保存至数据库中,便于后续查询和分析。原创 2024-12-17 14:45:41 · 131 阅读 · 0 评论 -
Pandas进行CSV文件读写
CSV文件是处理和交换数据的重要工具,尤其在数据分析、数据科学和各种自动化任务中,常常需要对CSV文件进行读写操作。通过学习如何使用Python读取和写入CSV文件,可以更加高效地处理数据,并与其他系统进行数据交换。无论是在个人项目中还是在实际工作中,掌握这项技能都能够为数据处理提供强有力的支持。在接下来的编程实践中,将通过更多实际案例进一步熟悉CSV文件的读写操作,从而更灵活地应对各种数据处理需求。原创 2024-12-12 08:13:57 · 106 阅读 · 0 评论 -
Pandas进行基础统计计算
在数据分析中,和是三个非常重要且常用的统计方法。它们帮助快速提取数据集的关键统计信息,从而提供有效的分析依据。sum计算数据总和,适合汇总销售额等数据;mean计算均值,适合分析数据的集中趋势;而median则计算中位数,在数据存在极端值时尤为有效。在实际工作中,灵活使用这些方法能够提升数据分析的效率与准确性。原创 2024-12-12 08:13:40 · 124 阅读 · 0 评论 -
Pandas进行plot数据可视化
Pandas 的方法为用户提供了简单且强大的数据可视化功能。通过其与 Matplotlib 的无缝集成,用户可以轻松绘制各种类型的图表,如折线图、柱状图、散点图等,满足不同的数据分析需求。除了生成基本图表外,还可以通过多种参数进行灵活的定制,以提高图形的美观性和信息传达的清晰度。在商业数据分析、市场研究、科研统计等领域,掌握 Pandas 的内置绘图方法将极大提高数据的可视化和洞察能力,帮助分析人员在复杂数据中做出更明智的决策。原创 2024-12-11 08:41:26 · 117 阅读 · 0 评论 -
Pandas进行时间选择与过滤
在处理时间序列数据时,合理地筛选时间范围或特定时间点的数据是常见的需求。pandas 提供的和at_time()方法,简化了这一过程,使得从时间维度对数据进行筛选更加便捷。帮助在一段时间内筛选出数据,而at_time()则可以精准提取某个时间点的数据。通过这两种方法,分析师能够高效地从时间序列中获取有价值的信息,并应用于实际工作中的多种场景。原创 2024-12-11 08:41:13 · 120 阅读 · 0 评论 -
Python学习笔记 - 探索列表与字典的特殊操作
在Python编程中,列表与字典是两种强大且灵活的数据结构。列表适合存储有序数据,支持快速访问、动态扩展、切片和推导等操作;字典通过键值对的方式提供了高效的数据存储与查找,适合存储映射关系。合理运用列表与字典的特殊操作,不仅能提升代码效率,还能提高代码的可读性和扩展性。通过结合两者使用,如嵌套列表、嵌套字典、字典列表等组合结构,进一步增强了数据管理的能力。这种组合特别适用于管理层级结构的数据,处理复杂的数据逻辑,并且在数据分析、配置管理、系统开发等场景中提供了简洁且强大的解决方案。原创 2024-12-10 08:15:00 · 306 阅读 · 0 评论 -
Python学习笔记 - 探索函数式编程常用方法
函数式编程是Python编程中一种高度抽象的编程范式,以函数为中心,通过不变的数据结构和纯函数来构建程序。函数式编程的核心思想在于“无副作用”和“数据不可变性”,这样的编程方式能提高代码的可读性和可维护性,减少错误的发生,特别适合用于处理复杂的数据操作、并行计算和数据流处理等场景。掌握Python中的函数式编程思维,不仅有助于拓展编程视野,更能提升编写高效、优雅代码的能力。函数式编程在Python中主要通过一些关键特性来实现,包括高阶函数、匿名函数、闭包、柯里化等。此外,Python中还提供了、等模块,使得原创 2024-12-10 08:00:00 · 301 阅读 · 0 评论 -
Python学习笔记 - 探索枚举和Zip的应用
枚举(Enumerate)和Zip作为Python内置函数,在数据处理和编程中起着重要作用。枚举使得在遍历可迭代对象时能够轻松获取元素的索引与值,而Zip则将多个序列逐项打包成元组,提供了简便的多组数据管理方式。两者结合使用,更适合复杂数据结构的处理需求,例如多维数据的对齐、数据分析中的进度跟踪等。通过这些功能,能实现更加简洁和高效的代码结构,减少额外的逻辑编写,提升程序可读性。枚举和Zip的应用场景涵盖了数据标记、任务管理、数据分析等多个领域。原创 2024-12-09 08:26:51 · 216 阅读 · 0 评论 -
Python学习笔记 - 探索函数上下文与装饰器
函数上下文与装饰器是Python编程中的重要概念,它们提供了强大的代码复用和结构化能力,使代码在逻辑上更清晰、功能上更强大。通过理解函数的作用域和命名空间,可以更好地掌握变量的生命周期及其可见性,确保代码结构合理。装饰器则通过简洁的方式让程序动态地添加功能,是编写灵活、高效代码的利器。在实际应用中,函数和装饰器的巧妙结合能有效减少代码冗余,使程序更加模块化、便于维护。不论是简单的日志记录还是复杂的权限控制,装饰器都能为Python开发者提供灵活的解决方案。原创 2024-12-09 08:26:41 · 216 阅读 · 0 评论 -
Python学习笔记 - 探索生成器的应用与原理
生成器是Python中强大且高效的数据生成工具,尤其适合于需要处理大量数据、数据流或长时间任务的场景。通过逐步生成和返回数据,生成器能够有效减少内存消耗,提升程序的性能。Python的生成器还支持多种高级用法,包括生成器表达式、递归生成器以及异步生成器等,使其应用范围涵盖了从基本的序列生成到复杂的异步数据处理。通过系统地学习与实践生成器,可以充分发挥Python在数据生成与处理上的强大能力,为开发更加高效、稳定的应用奠定基础。原创 2024-11-05 21:04:27 · 297 阅读 · 0 评论 -
Python学习笔记 - 探索断点操作结合异常处理
断点与异常处理的结合应用是高效调试与健壮性代码编写的重要手段。断点帮助开发者快速定位问题,异常处理则能有效应对运行时的各类错误。在程序开发过程中,将两者结合使用,可以更清晰地理解代码运行流程并构建高容错性的程序结构。熟练掌握这些技术,将极大提升代码质量和开发效率。原创 2024-11-05 21:04:21 · 480 阅读 · 0 评论 -
Pandas进行时间数据转换与生成
通过学习和,能够掌握处理时间数据的基本方法。在实际应用中,时间数据的格式转换以及时间序列的生成有助于更灵活地操作和分析数据。无论是订单数据分析,还是生成特定时间段的索引,这些方法都能帮助构建更高效的数据分析流程。原创 2024-08-18 14:47:23 · 309 阅读 · 0 评论 -
Pandas应用query进行表达式运算
方法通过SQL风格的语法,极大地简化了DataFrame的筛选操作,特别是在处理多条件查询时,它比传统的布尔索引方式更加直观和易读。无论是在数据清洗、数据分析还是数据报表生成的场景中,query()都是非常实用的工具,能显著提升工作效率。通过本教程的学习,能够对query()的基本操作及其在实际中的应用有了全面的理解。原创 2024-08-18 14:47:09 · 359 阅读 · 0 评论