机器学习-37-对ML的思考之机器学习发展的三个阶段和驱动AI发展三驾马车的由来

1 引言

今天,人们把“数据+算法+算力”当成驱动人工智能发展的三驾马车,本文试着探讨这种模式的由来。

回顾机器学习发展历史的动机,主要是从中吸取教训:
一是为了警示我们注意那些本质不能做的事情,以避免重复历史上已经发生过的错误;
二是关注那些前人研究中的某些动机,它们的失败可能是受到技术条件的限制而不可行,但是,在新的技术条件下可能获得新生。
在这里插入图片描述
由于深度学习的成功,今天机器学习(甚至是人工智能)的历史文章和书籍中,有关神经网络的内容往往占据了大量篇幅,这让人们很难发现机器学习发展的轨迹。

本文沿着机器学习三个拐点的思路,把机器学习的发展分为三个阶段。

拐点一:PAC学习理论
拐点二:UCI机器学习数据库
拐点三:ImageNet数据集

机器学习发展到今天,许多人已经开始迷信“算法”了,以为算法可以解决一切问题。但其实,算法的成功,“数据+算力”功不可没,否

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值