OpenVINO怎么用

目录

OpenVINO 简介

主要组件

安装 OpenVINO

使用 OpenVINO 的基本步骤

OpenVINO 简介

OpenVINO(Open Visual Inference and Neural Network Optimization)是英特尔推出的一个开源工具包,旨在帮助开发者在英特尔硬件平台上高效部署深度学习推理应用。它支持多种深度学习框架(如 TensorFlow、PyTorch、ONNX 等)训练的模型,能够优化模型并将其部署到英特尔的 CPU、GPU、VPU(视觉处理单元)和 FPGA 等硬件上,加速推理过程,降低延迟。

主要组件

1. 模型优化器(Model Optimizer) :这是一个命令行工具,用于将训练好的模型(来自不同深度学习框架)转换为中间表示(Intermediate Representation, IR)格式。IR 格式包含 .xml 和 .bin 文件,分别描述模型的拓扑结构和权重数据。
2. 推理引擎(Inference Engine) :提供了一系列 API,用于在不同的英特尔硬件上加载和执行转换后的 IR 模型。支持 C++、Python 等多种编程语言。


安装 OpenVINO

可以通过以下步骤在 Linux 系统上安装 OpenVINO,其他系统的安装步骤可参考 官方文档 。

# 下载安装包
wget https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.3/linux/l_openvino_toolkit_ubuntu20_2023.3.0.13775.ceeafaf64f3_x86_64.tgz

# 解压安装包
tar -xzf l_openvino_toolkit_ubuntu20_2023.3.0.13775.ceeafaf64f3_x86_64.tgz

# 运行安装脚本
cd l_openvino_toolkit_ubuntu20_2023.3.0.13775.ceeafaf64f3_x86_64
sudo -E ./install_openvino_dependencies.sh
./install.sh

使用 OpenVINO 的基本步骤

1. 转换模型
使用模型优化器将训练好的模型转换为 IR 格式。以下是将 TensorFlow 模型转换为 IR 格式的示例:
mo --input_model /path/to/your/model.pb --output_dir /path/to/output/dir
 


 2. 加载和运行推理
以下是一个使用 Python API 加载 IR 模型并进行推理的示例:
import cv2
import numpy as np
from openvino.runtime import Core

# 初始化 OpenVINO 核心对象
ie = Core()

# 读取模型
model_path = "/path/to/output/dir/model.xml"
model = ie.read_model(model=model_path)

# 编译模型到指定设备
compiled_model = ie.compile_model(model=model, device_name="CPU")

# 获取输入和输出节点
input_layer = next(iter(compiled_model.inputs))
output_layer = next(iter(compiled_model.outputs))

# 读取图像并预处理
image_path = "test_image.jpg"
image = cv2.imread(image_path)
resized_image = cv2.resize(image, (input_layer.shape[3], input_layer.shape[2]))
input_tensor = np.expand_dims(np.transpose(resized_image, (2, 0, 1)), 0)

# 执行推理
results = compiled_model([input_tensor])[output_layer]

# 处理推理结果
print(results)


       OpenVINO 提供了一套完整的工具链,帮助开发者高效地在英特尔硬件上部署深度学习模型。通过模型优化器和推理引擎,能够显著提升推理性能。使用时,先将模型转换为 IR 格式,然后利用推理引擎的 API 进行加载和执行推理。

Ubuntu OpenVINO使用教程: 1. 确保您的Ubuntu系统已经安装了OpenVINO。您可以从OpenVINO官方网站上下载并安装OpenVINO工具包。 2. 安装完成后,您需要设置OpenVINO环境变量。打开终端,并输入以下命令来设置环境变量: source /opt/intel/openvino/bin/setupvars.sh 这将设置必要的环境变量,以便您可以在终端中使用OpenVINO工具。 3. 在OpenVINO安装目录下的“deployment_tools/inference_engine/samples”目录中,您可以找到一些示例代码。这些示例代码可以帮助您开始使用OpenVINO。 4. 运行OpenVINO示例代码之前,您需要将模型和标签文件转换为OpenVINO支持的格式。您可以使用OpenVINO提供的Model Optimizer工具来执行这个转换过程。 5. 在您的终端中输入以下命令,将模型和标签文件转换为OpenVINO支持的格式: python /opt/intel/openvino/deployment_tools/model_optimizer/mo.py --input_model <your_model_path> 这将生成一个IR(Intermediate Representation)格式的文件,可以用于OpenVINO的推理引擎。 6. 一旦模型和标签文件已经转换为OpenVINO格式,您可以运行示例代码来测试推理引擎的性能。 进入示例代码目录,然后编译并运行示例代码: cd /opt/intel/openvino/deployment_tools/inference_engine/samples/build/intel64/Release make -j ./classification_sample_async -i <input_image_path> -m <ir_file_path> -d CPU 这将使用CPU来运行一个图像分类示例。 7. 您还可以通过使用OpenVINO的Python API来开发自己的应用程序。OpenVINO提供了一些示例代码和文档,以帮助您开始。 以上是Ubuntu OpenVINO使用教程的简要介绍。希望对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码小哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值