CondConv:按需定制的卷积权重

CondConv是Google Brain提出的一种结合条件计算、集成技术和注意力机制的卷积权重方法。通过动态调整卷积层的权重,为特定输入定制卷积核,减少不必要的计算,实现高效推理。在MobileNetv1上的实验展示了其有效性和潜在的计算效率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:CondConv:按需定制的卷积权重 | Hey~YaHei!

最近正巧在看条件计算的东西,发现今年Google Brain发了一篇思路清奇的论文《CondConv: Conditionally Parameterized Convolutions for Efficient Inference(2019NeurIPS)》,这思路简直让人拍案叫绝,只可惜这种模型需要重新定制卷积算子才能有效发挥它的作用,如果没有工业界的推动想必短期内很难产生实用价值吧。
先来说说论文的主要贡献:条件计算、集成技术、注意力机制三者间的巧妙结合。

条件计算

如果是模型压缩是深度学习的一个边缘领域,那么条件计算一定是模型压缩里的边缘方向。如果你听过模型压缩,那你一定知道裁剪和量化,可能你还会知道一些紧凑网络的设计和知识蒸馏,但我打赌你十有八九没听过条件计算。

有一天我躺在床上睡觉,突然灵光一现——直观上讲,既然不同的layer乃至不同filter能提取出不同的特征,而对于不同的输入,我们所重视的特征必定也是不同的,是不是能设计出某个评估/预测模块从而智能地挑选合适layer、filter来计算而放弃无关layer、filter的计算呢?或者说当浅层特征足以完成推断,我们能不能提前从浅层特征图跳出而放弃后续深层特征的提取步骤呢?再或者,对于连续的视频流,有没有可能在浅层位置先预估出本帧图像的质量,从而判断是否放弃本帧图像的推断呢(比如有些视频流情况下我们不需要每一帧都做出准确推断的时候,能否提前中断来获取新的可能质量更好的一帧图像)?

这种思路似乎有些诡异,但又有些合理。正当我为自己“天才般”的想法沾沾自喜的时候,发现其实很早以前就有人研究过这类问题(好吧QAQ)——
第一种思路通常被称为条件计算(Condi

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值